
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Tracetree: A Scalable Mechanism to Discover
Multicast Tree Topologies in the Internet

Kamil Sarac,Member, IEEE and Kevin C. Almeroth,Senior Member, IEEE

Abstract— The successful deployment of multicast in the In-
ternet requires the availability of good network management so-
lutions. Discovering multicast tree topologies is an important
component of this task. Network managers can use topology in-
formation to monitor and debug potential multicast forwarding
problems. In addition, the collected topology has several other
uses, for example, in reliable multicast transport protocols, in
multicast congestion control protocols, and in discovering net-
work characteristics. In this paper, we present a mechanism for
discovering multicast tree topologies using forwarding state in
the network. We call our approach tracetree. First, we present
the basic operation of tracetree. Then, we explore various is-
sues related to its functionality (e.g., scalability, security, etc.).
Next, we provide a detailed evaluation by comparingtracetreeto
the currently available alternatives. Finally, we discuss a num-
ber of deployment issues. We believe thattracetreeprovides an
efficient and scalable mechanism for discovering multicast tree
topologies and therefore fills an important void in the area of
multicast network management.

Keywords— Multicast, tree topology discovery, forwarding
state, routing, monitoring, management.

I. I NTRODUCTION

With the deployment of native multicast in commercial net-
works, multicast is getting closer to becoming a ubiquitous
service in the Internet. Before multicast can be used as a
revenue-generating service, its robust and flawless operation
needs to be established in the inter-domain [1]. This requires
the availability of management tools to help network admin-
istrators configure and maintain multicast functionality within
and between multicast-enabled domains.

Discovering multicast tree topologies is an important com-
ponent of multicast network management [2]. Network man-
agers can use the topology information as the basis of group
monitoring, or can use it to identify potential multicast for-
warding problems that may occur due to routing protocol lim-
itations, multicast network mis-configurations, or routing pol-
icy decisions. In addition, topology information has several
other uses: reliable multicast transport protocols [3], multi-
cast congestion control protocols [4], and discovering network
characteristics [5]. Finally, end users can use topology infor-
mation and traffic flow to monitor activity in a group, or, if
there is a problem, where to direct an inquiry [6].

There are two main approaches to discovering multicast tree
topologies: (1) inference-based approaches and (2) network-
probing approaches. An inference-based approach uses loss

Kamil Sarac is with the Department of Computer Science, University of
Texas at Dallas, Richardson, TX 75083, (email: ksarac@utdallas.edu).

Kevin Almeroth is with the Department of Computer Science, University
of California, Santa Barbara, CA 93106, (email: almeroth@cs.ucsb.edu).

and/or delay as seen from receiver sites to infer the logical tree
topology [7], [8]. A logical tree is an abbreviation of a multi-
cast tree that includes only the root, branching, and leaf routers
on the multicast tree. From the point-of-view of network man-
agement and debugging multicast forwarding problems, this
approach is only of limited value. First, it can only return
the logical tree topology rather than the actual tree topology.
Second, it requires all receivers to participate in the topology
inference operation.

In the second approach, topology information is collected
directly from routers in the network. This can be done in
two different ways: (1) using Management Information Base
(MIB) information, and (2) using Routing Information Base
(RIB) information in the routers. In the first method, using the
Simple Network Management Protocol (SNMP) [9], routers
can be queried to return group-specific information from their
MIB tables. This information can then be used to build a rep-
resentation of the tree topology. In the second method, pack-
ets used to discover the tree topology are forwarded by the
routers based on their RIB table information. This method
is divided into two parts based on the kind of information
used: (a) routing-based and (b) forwarding-based approaches.
In multicast, routing information is used to create a multicast
tree between receiver sites and the source. During this process,
each on-tree router creates and adds a new state entry into its
multicast forwarding table. This state contains the interface
in which the multicast data is expected to arrive and the inter-
face(s) on which the multicast data is to be forwarded. There-
fore, using the RIB information in routers, the tree topology
can be discovered in two different directions:

• Receiver(s)-to-source direction:Multicastrouting informa-
tion is used to discover the tree topology. First, the multicast
path from each receiver to the source site is traced. Then,
the collected information is used to build a tree [10], [11].
This approach requires knowing the identities of all session
receivers.
• Source-to-receiver(s) direction:Multicastforwardinginfor-
mation is used to discover the tree topology. Topology discov-
ery starts at the root of the tree and progresses toward the re-
ceivers. On-tree routers forward control packets based on their
multicast forwarding state. Therefore, this approach does not
require knowledge of session receivers.

Currently, there are mechanisms (e.g.,mtrace[11] support
in routers) and proposed tools (e.g.,MHealth[10]) to discover
multicast tree topologies in the receiver(s)-to-source direction.
However, due to scoping difficulties and many-to-one scalabil-
ity problems, topology discovery in the source-to-receiver(s)
direction has been considered impractical. Contrary to this
belief, our main purpose in this paper is to show that topol-

2 IEEE/ACM TRANSACTIONS ON NETWORKING

ogy discovery in this direction is not only viable but also more
effective, efficient, and scalable when compared to existing
alternatives. In this paper we present our topology discovery
approach as a stand alone mechanism and compare it to exist-
ing approaches such asmtraceand SNMP-based approaches.
However, the main focus of this paper is not necessarily to de-
fine a protocol specification for standardization purposes, but
to present the feasibility and advantages of our approach. In
addition, in order to clearly present the advantages and dis-
advantages of our approach, we introduce it independent of
the current existing management frameworks, namely SNMP-
based network management frameworks. However, the mech-
anisms presented in this paper can be included in a network
management platform, such as HP OpenView [12], and co-
exist with SNMP. In summary, we see our work as a feasibil-
ity study and leave the development of the actual protocol(s)
(either a stand alone protocol or an extension to the SNMP-
based management framework) to the Internet Engineering
Task Force (IETF).

In this paper, we explore the possibilities of using forward-
ing state to discover multicast tree topologies. We call our ap-
proachtracetree. Compared to theexisting mtraceand SNMP-
based techniques,tracetreeprovides a more efficient and scal-
able mechanism to collect multicast tree topologies in the net-
work. We present the basic idea behindtracetreeand discuss
a number of important issues related to its functionality. In ad-
dition, we provide a detailed evaluation of thetracetreemech-
anism. Finally we discuss a number of deployment issues for
tracetreein the Internet.

The remainder of the paper is organized as follows. The
next section is on related work. Section III presents the basic
operation oftracetree. Section IV discusses issues related to
tracetree-based topology discovery. Section V and VI address
scalability and efficiency concerns fortracetree. Section VII
includes our evaluation oftracetree. Section VIII addresses
a number of deployment issues and the paper is concluded in
Section IX.

II. RELATED WORK

In order to evaluatetracetree, it is important to understand
how related techniques operate. Therefore, in this section, we
study the currently available techniques for topology discov-
ery. There are a number of existing multicast management
tools that collect multicast tree topologies for monitoring pur-
poses. These tools can be grouped into SNMP-based tools and
mtrace-based tools. In this section, we briefly describemmon
andMHealthas example tools in these groups respectively.

Mmon is an SNMP-based software tool developed at HP
Labs [13]. It was developed primarily for managers of IP
multicast networks.Mmonuses a network map and a num-
ber of multicast related MIB tables to discover a multicast
tree’s topology. In practice, SNMP-based MIB information
in routers is accessible only by Network Operation Center
(NOC) personnel within an administrative domain. Therefore,
mmonis well-suited for use by NOC personnel within a do-
main. However, it is not accessible by ordinary end users in
the domain and it is also not effective in the inter-domain. As

a result,mmon(or any other SNMP-based topology discovery
tool) is effective at discovering multicast (sub)tree topologies
within a domain only.

MHealth, the Multicast Health Monitor, is anmtrace-based
multicast monitoring tool [10]. It works in the receiver(s)-to-
source direction and usesmtraceand the Realtime Transport
Control Protocol (RTCP) [14].Mtrace[11] is a multicast ver-
sion of thetracerouteutility. It is used to discover the multi-
cast path between a given receiver and a source in a multicast
group. The trace starts at the receiver site and works in the re-
verse direction toward the source site.Mtracehas two modes
of operation: (1)plain mtraceand (2)hop-by-hop mtrace. In
plain mtrace, each router appends its response block to the re-
quest packet and forwards it to the upstream router. When the
request packet reaches the first hop router at the source site,
it contains the complete path information. Ifplain mtraceis
not successful, hop-by-hop mode is used.Hop-by-hop mtrace
works similarly totraceroute. Requests start with a TTL of
one and is incremented after successfully receiving a response
from the routers. One requirement of themtrace-based ap-
proaches is to know the identities of each and every receiver in
a multicast group.MHealthuses RTCP reports to collect this
information. RTCP is defined as part of the Realtime Trans-
port Protocol (RTP). RTCP specifies periodic transmission of
control packets by all group members to all other group mem-
bers.

An advantage ofMHealth over the SNMP-based tools is
that it is a user-level tool and it can work on an inter-domain
scale. On the other hand,MHealth depends on RTCP data
which is unreliable (i.e. one may not learn a complete set
of receivers in a multicast group). In addition, emerging
multicast routing protocols, e.g., Source Specific Multicast
(SSM) [15], break the RTCP mechanism by allowing only the
session source to transmit data to the group multicast address.
Finally, MHealthcan only be used to discover tree topologies
where the application layer transport mechanism uses RTP.

III. TracetreeFUNCTIONALITY

In this section, we give an overview of thetracetree-based
topology discovery mechanism. Our general approach is to
discover tree topologies in the source-to-receiver(s) direction.
This approach uses the forwarding state information in the
routers to discover multicast tree topology. Aquerier that is
interested in discovering the tree topology sends atracetree
querymessage to the root router and then expects to receive
tracetree responsesfrom the on-tree routers. On receiving the
query message, the root router first creates a response mes-
sage and sends it to the querier via unicast. Then, the router
creates atracetree requestpacket and forwards it on the mul-
ticast tree. In the example in Figure 1, a third party querier,
Q, is interested in discovering the multicast tree topology for
group(S, G). Q sends atracetree querymessage to the first
hop router,A, at the session source siteS. On receiving this
query message,A changes it to atracetree requestpacket and
forwards it to its down stream neighbors on the multicast tree
(routers B and C).Tracetreerequests include atracetree pro-
tocol header. The root router A uses its own IP address as the

SARAC AND ALMEROTH: TRACETREE: A SCALABLE MECHANISM TO DISCOVER MULTICAST TREE TOPOLOGIES IN THE INTERNET 3

A

B

D E

C

Session source S

Multicast tree for group (S, G)

Querier Q

Fig. 1. Overview of topology collection.

request forwarderand the IP address of the querier Q as the
response destinationinto thetracetreeprotocol header.

Each on-tree router, upon receiving atracetree request
packet, sends its own response back to the querier. In this
response, the router includes the address of the request for-
warder router, the local interface address it received the re-
quest packet from, and the number and addresses of interfaces
that it forwards the request packet on. If the scope of the re-
quest packet expires, it reports this fact in the response as well.
In addition to sending its own response information back to
the querier, the router replaces the request forwarder address
in the incoming request packet with its own IP address and for-
wards the request packet down the tree as long as the scope of
the packet allows it to do so. During this process, the querier
collects the incoming response messages to create a represen-
tation of the multicast tree topology.

Finally, depending on the type of the multicast tree, the root
router may be either the first hop router at the session source
site (in the case of source specific trees) or it can be a Ren-
dezvous Point (RP) router (in the case of shared trees). In
addition, the querier can send its queries to any on-tree router
to discover the sub-tree topology rooted at this router.

IV. TOPOLOGYDISCOVERY ISSUES

While the basic operation oftracetreeis straightforward,
there are a number of additional issues that need to be consid-
ered. We discuss these issues below.

A. Forwarding Request Packets

Tracetreerequest packets are forwarded based on existing
multicast data forwarding states. The actual forwarding can be
done in two different ways: (1) hop-by-hop forwarding of re-
quest packets, or (2) multicast forwarding of request packets.
In the hop-by-hop forwarding approach, each on-tree router
forwards the request packet to its downstream neighbors simi-
lar tomtracerequest forwarding discussed in the previous sec-
tion. That is, if the forwarding router knows the IP addresses
of downstream neighbors on the tree, it sends thetracetreere-
quest packet to these addresses individually. However, if it
does not know the IP address of a downstream neighbor, or if
the outgoing interface is on a shared media, it sends thetrace-
treerequest to a link-local multicast group address defined by

the multicast routing protocol in use. In addition, request for-
warding can use acknowledgements for reliability.

In the multicast forwarding approach, the request packets
are addressed to the multicast group address. In order to
distinguishtracetreerequests from regular data packets, the
routers set the IP Router Alert option [16] in thetracetreere-
quest packets. This option forces routers to pull the request
packets from the forwarding fast path and examine them. In
addition, in the case of source specific tree discovery, routers
spoof the IP address of the session source and use it as the
source IP address in the request packet. This enables request
packets to successfully propagate on the source specific for-
warding tree. In the case of a shared tree discovery, this spoof-
ing may not be necessary but would be useful to avoid creating
additional forwarding state entries in the routers.

The main advantage of hop-by-hop forwarding is that it
does not use the IP Router Alert option. In general, Router
Alert option processing is considered to be expensive as it
causes routers to closely examine packets that are not directly
destined to themselves. On the other hand, the disadvantage of
this approach is that during the initial deployment oftracetree
in the network, a router that does not implement thetracetree
functionality would not know how to handle the request pack-
ets and would therefore drop them. This would essentially
halt the topology discovery at this router leaving the subtree
beyond it undiscovered. In the case of multicast forwarding of
request packets, non-compliant routers would simply forward
the request packets without doing any processing on them.
As we discuss in Section IV-C, this would cause some per-
formance degradation in topology discovery but would enable
us to continue the topology discovery beyond non-compliant
routers.

A potential deployment scenario may use a hybrid approach
as follows. When forwarding the request packets on a point-
to-point link, a router uses the hop-by-hop forwarding ap-
proach with reliability. If the downstream neighbor does not
send an acknowledgement back, then the forwarding router
sends another copy of the request packet using the multi-
cast forwarding approach. However, when forwarding request
packets on a shared link, routers send two copies of the re-
quests; one using the hop-by-hop approach, and the other us-
ing the multicast forwarding approach. In this case, compliant
routers will process the first and ignore the second, and non-
compliant routers will discard the first (the hop-by-hop one)
and forward the second (the multicast one).

B. Scalability

In tracetree, a given query message may result in a large
number ofsimultaneousresponses sent to the querier. If not
controlled, these responses may cause an implosion problem
at the querier. In order to control the number of responses,
we divide the topology discovery process into rounds and dis-
cover only a controlled portion of the multicast tree in each
round. Therefore, within each round, we would like to con-
trol the total number of responses sent to the querier by limit-
ing the number of routers receiving atracetreerequest packet.
One way to control the scope of IP packets is to use standard

4 IEEE/ACM TRANSACTIONS ON NETWORKING

TTL-based scoping. The semantics of standard TTL-based
scoping is that the given TTL value indicates the maximum
number of hops that an IP packet can propagate on the multi-
cast tree. Accordingly, the number of routers receiving a re-
quest packet may change based on the shape of the multicast
tree within the given scope. For example, in the tree topology
given in Figure 2-a, a TTL of 7 results in 14 responses while
the same TTL value results in 32 responses for the topology
in Figure 2-b. This example shows that standard TTL-based
scoping is not very helpful in accurately controlling the num-
ber of response messages. Instead, we need a scoping mech-
anism in which the TTL value indicates the maximum num-
ber of routers that should receive a copy of atracetreerequest
packet. In our work, we propose a modification to the standard
TTL-based scoping mechanism. According to ourmodified-
TTL-basedscoping mechanism, the scope of request packets
is controlled using the IP TTL field but routers use a differ-
ent computation to decrement the value. More specifically,
routers use their outgoing degree (i.e. the number of outgoing
on-tree interfaces) to compute the new TTL value,TTLnew,
as

TTLnew = bTTLcurrent − 1
num neighbors

c. (1)

In this computation,TTLcurrent is the TTL value of the
incomingtracetreerequest packet andnum neighbors is the
outgoing degree of the router on the multicast tree. According
to this computation, theTTLcurrent value limits the number
of routers that should receive a copy of the request packet.
In the case of the first hop router, it may use either a pre-
configured default value or anum response value that it re-
ceives from the querier as the initial value forTTLcurrent. In
Figure 2-c, the given TTL value 7 results in 7 routers receiv-
ing a request packet. In this case, the remaining portion of the
tree is discovered in additional rounds. The querier sends new
query messages to appropriate on-tree routers to continue the
topology discovery.

C. Existence of Non-compliant Routers

In this section we discuss the effect of non-compliant
routers on topology discovery. Non-compliant routers are the
routers that do not supporttracetreefunctionality. Sincetrace-
tree depends on routers to participate in topology discovery,
non-compliant routers may cause scalability problems in the
response collection process. That is, non-compliant routers
use the standard TTL decrement mechanism when forwarding
tracetreerequest packets.

In order to detect the existence of non-compliant routers,
we use a technique based on the duplication of the TTL value
in request packets. On forwarding a request packet, routers
copy the IP TTL value into a field,TTLtt, in the tracetree
protocol header. Upon receiving a request, routers compare
the values in the IP TTL and theTTLtt fields. The difference
between these two values gives the number of non-compliant
routers since the last compliant router on the path.Tracetree
must now decide what should be done.

The first compliant router after the non-compliant router(s)
uses anAverage Branching Factor(ABF) to re-compute the
IP TTL value,TTLIP , of the incoming request packet. The
ABF value is supplied by the querier in the initial query mes-
sage and is carried in thetracetreeheader in request packets.
The assumption here is that, on the average, each router in the
network has ABF outgoing interfaces on the multicast tree.
By using ABF andTTLtt, routers can compute the modified
TTL

′
IP value as

TTL
′

IP =
TTLtt

(ABF)(TTLtt−TTLIP)
. (2)

After updating the TTL value of the incoming request packet,
routers continue with the normaltracetreerequest processing.

Regarding the computation of ABF value, the querier can
use its own statistics based on the branching characteristics
of previously discovered tree topologies. As a querier per-
formstracetreequeries, it continuously updates its ABF statis-
tics based on the branching characteristics of the collected
tree topologies and uses this information in futuretracetree
requests. This will help the querier to dynamically update
the ABF value as the underlying multicast network topol-
ogy changes in the Internet. In a recent study, Chalmers and
Almeroth report that the ABF for internal multicast routers is
approximately 1.42 [17]. A querier with no pasttracetreeex-
perience can use this value to start. Our evaluations in Section
VII-C show that ABF of 1.42 is quite effective in controlling
report implosion at the querier site.

Similar to the case with non-compliant routers, the exis-
tence of multi-access links between on-tree routers may cause
irregularities in scope calculations. This is mainly because
routers may not know the number of on-tree routers shar-
ing the same multi-access link with themselves. In this case,
routers can use the number-of-neighbors information that they
maintain as part of the multicast routing protocol to compute
theTTLIP value in thetracetreerequest packets.

D. Security

Security is an important concern intracetree. This is be-
causetracetreecould be used to launch third-party denial-of-
service attacks. A malicious user could spoof the IP address of
a third-party site and identify itself as a querier causing routers
to send a potentially large number of responses to the victim
site. In order to make launching this type of attack difficult, we
use a three-way handshake fortracetreequeries. In this mech-
anism, a router R applies a hash functionHK with a periodi-
cally changing secret keyK on the IP address of the incoming
query message to generate a stringS. Then, R sends S back to
the IP source of the query message. Later on, when R receives
a response from the querier with the correct string S, which
it can verify by applyingH−1

K on S, it honors the request. If
a router changes its key value while there are pending query
messages to be verified, the router keeps the previous key (or
a few of them) to authenticate a reply message coming from
the querier. When the router receives a message with a string
S that it cannot verify with the current key, it uses the previous
key to verify it.

SARAC AND ALMEROTH: TRACETREE: A SCALABLE MECHANISM TO DISCOVER MULTICAST TREE TOPOLOGIES IN THE INTERNET 5

IPTTL = 7
IPTTL = 7

IPTTL = 3

IPTTL = 1

IPTTL = 6

IPTTL = 5

IPTTL = 4

IPTTL = 3

IPTTL = 2

IPTTL = 1

Topology
discovery
is left to
future rounds.

(b)(a) (c)

TTL of 7 results in 14 responses TTL of 7 results in 32 responses TTL of 7 results in 7 responses (at most)
Modified−TTL−based scopingStandard TTL−based scopingStandard TTL−based scoping

Fig. 2. Comparison of TTL-based scopings.

A second mechanism thattracetreeuses for protection is
to regulate the query/request processing rate at routers. That
is, a router receiving a large number of queries/requests in an
interval may ignore some or all of them. This mechanism both
prevents the router from being overloaded with query/request
messages and reduces the effect of potential attacks.

Another security issue fortracetreeis the possibility of in-
jecting fake request packets into the tree. We believe that such
an attack would be difficult to accomplish due to multicast for-
warding rules, specifically the Reverse Path Forwarding (RPF)
rule [18].

E. Finding the First Hop Router

Before sending atracetree query message, the querier
needs to know the IP address of the first hop router. We
assume that the querier obtains this information externally
and uses it to initiate the topology collection process. For
a network administrator or a local querier, this information
should be easy to determine. Remote queriers can run a
group specificmtracetoward the session source and get this
information. Considering the possibility that there may be
multiple routers on the source’s LAN, after identifying a
first hop router throughmtrace, the querier may use IGMP
ASK NEIGHBORS queries to learn the addresses of other
first hop routers and may send additional queries to them. Al-
ternatively, the router could send thetracetreerequest on the
LAN, and the request would be forwarded by all other first-
hop routers. However, if the session source is connected to
multiple LAN segments, the above mechanism may not be
that helpful in learning the addresses of first hop routers on
different LAN segments.

F. Loss of Request or Response Messages

The loss of a request message results in the premature end
of the discovery round. This typically requires the querier to
run an additional round to trace the missing tree branch. The
loss of a response message may have different implications
depending on the location of the loss within a round. For ex-

x
A

B

D

C

(a)

Querier

(b)

x

A

B C

D

Querier

FE FE

Fig. 3. Loss of response messages.

ample, in Figure 3-a, the loss of the response message coming
from router B causes a gap in the tree topology collected at
the querier site. In this case, the querier can send a newtrace-
treequery to the appropriate on-tree router(s) (to router A in
the above example) to retrieve the missing information. On
the other hand, when the response message of a leaf router
(leaf of a round or leaf of the tree) gets lost, as in Figure
3-b, this does not cause any gaps in the collected topology.
When router B sends its response, it reports the fact that it for-
warded the request message on its outgoing interface on the
tree. Therefore, the querier expects to receive a response from
a router reporting that this router received the request packet
from router B. Due to the lack of such a response, the querier
decides that this response was lost and therefore runs a new
round to collect this information by sending a new query to
router B. In general, the querier may need to send several such
query messages to a number of on-tree routers to collect the
missing information.

G. Effect of Topology Changes During Discovery

Multicast forwarding trees are created and maintained in the
network dynamically. Changes in the underlying unicast net-
work topology necessarily change tree topologies in the net-
work. These changes may in turn cause query or request mes-
sages to arrive at routers that are no longer on the multicast
tree. In the case of compliant routers, they can send a message
back to the querier informing it of the situation. This way, the

6 IEEE/ACM TRANSACTIONS ON NETWORKING

querier explicitly learns about the topology changes in the net-
work and re-runstracetreeto discover the new tree topology.
In the case of non-compliant routers, they can simply ignore
the message. Depending on the policy that the querier uses
for handling non-compliant routers, it may take longer for the
querier to learn/detect topology changes in the network.

V. I MPROVING TracetreeSCALABILITY

Tracetreedepends on each and every compliant on-tree
router to send its response back to the querier. Basic scala-
bility is provided by dividing topology discovery into rounds
and discovering a controlled portion of the tree in each round.
In addition to this mechanism, based on the characteristics of
multicast forwarding trees, we propose a new response col-
lection approach to further improve the scalability oftrace-
tree. We call this approachnon-relay response collection (nr-
response).

In a recent related study, Chalmers and Almeroth report
that relay routers constitute more than 80% of the interme-
diate routers on a multicast tree [17]. Similar results have
been reported in an earlier study by Pansiot and Grad [19].
Based on these findings,nr-responseoperates as follows: on
receiving a request packet, eachrelay router first creates its re-
sponse packet. Then, instead of sending this response directly
to the querier, it appends it to the end of the request packet
and forwards it to its downstream neighbor. On receiving a
request packet, eachbranchingrouter first creates its own re-
sponse packet, then appends it to the end of the accumulated
information. At this point, the collected response information
corresponds to the multicast path between this router and the
previous compliant branching router on the multicast tree. In
the next step, this router separates the accumulated response
information from the request packet and sends it back to the
querier. In the last step, it forwards a fresh request packet (a
request packet having no response information appended) to
its downstream neighbors. In addition, if a router has only one
out-going interface but this interface is on a shared LAN seg-
ment and if this router has more than one multicast enabled
neighbor on this shared LAN segment, then the router consid-
ers itself a branching router. In the case ofleaf routers, they
will perform similar steps as the branching routers (except for
the request forwarding step).

One final modification related tonr-responseis on the scope
calculation of the request packets. As we have mentioned pre-
viously, tracetreeuses a modified-TTL scoping mechanism
for scalability and uses the duplication of IP TTL values (in
theTTLtt field) to detect non-compliant routers. In the origi-
nal tracetreemechanism, at each compliant router on the tree
(whether it is a relay router or not), these values are com-
puted/decremented according to Equation 1. Innr-response,
we require only the branching routers and the leaf routers to
send responses back to the querier. Therefore, using the IP
TTL value alone is not very helpful for controlling the num-
ber of responses. For this reason, we propose a slightly dif-
ferent TTL scoping mechanism for controlling the scope of
request packets. That is, we use a new fieldTTLnr in the
tracetreeprotocol header to indicate the number of responses

0

1 2

3

4

5

6

7 8

9

10

11

12

13

15

16

17

18 19

20

21

22 23

24

25

26

27

28 29

30

31

32

33

34

35

36

37 38

3940

41

100

49 49

48

47

46

22

45

22

21

20

19

18

1010

9

8

7

4 4

3

2

3

2

1

14

Fig. 4. A sample multicast tree topology.

expected to be received in this round from the network. In
this situation, the (TTLIP , TTLtt) pair is used to detect non-
compliant routers on the multicast tree. When a non-relay
router receives the request packet, it uses theTTLnr value
to send its response back to the querier and modifies this value
for the request packets that it forwards on the tree. In addi-
tion, in order to prevent pre-mature scope expiration (due to
IP TTL expiration in the network) each compliant router on
the multicast tree adjustsTTLIP andTTLtt values accord-
ing toTTLnr value.

As an example, consider the tree topology in Figure 4. Ac-
cording tonr-response, the querier will receive responses only
from the root router (0), branching routers (nodes 6, 7, 13,
21, 27, and 36) and leaf routers (nodes 1, 12, 17, 28, 29, 33,
39, and 41). Therefore, the querier will learn the exact same
topology information but will receive fewer responses (15 re-
sponses instead of 42 in this particular example). Thus, based
on branching characteristics, we can reduce both the number
of rounds and the overall discovery time.

VI. EFFICIENCY CONSIDERATIONS

So far, we have presented a new approach for tree topol-
ogy discovery in the source-to-receiver(s) direction and dis-
cussed a number of important issues that are critical to its ef-
fective operation. One other issue that we need to address is
the efficiency of our mechanism. We define three efficiency
metrics fortracetree: (1) time to trace a tree, (2) number of
rounds to trace the tree, and (3) the number of responses re-
turned in a round for a given initial TTL value. In this con-
text we are interested in finding tight bounds for these met-
rics. These bounds will then give us a means to evaluate the
efficiency oftracetree. In general, we would like to discover
a given tree topology in the shortest possible time. This time

SARAC AND ALMEROTH: TRACETREE: A SCALABLE MECHANISM TO DISCOVER MULTICAST TREE TOPOLOGIES IN THE INTERNET 7

usually depends on the number of rounds that it takes to dis-
cover the topology. In addition, the number of rounds depends
on the number of responses collected in each round. Finally,
the number of responses collected in each round depends on
the initial TTL value. Overall, all of these metrics depend on
the size, depth, and branching characteristics of the given tree
topology.

Tracetreeprovides a spectrum of choices for response col-
lection. In general, during topology discovery, on-tree routers
may not know the branching and depth characteristics of the
subtree below them. This makes it difficult for an arbitrary re-
sponse collection mechanism (i.e. for an arbitrary TTL scop-
ing procedure) to bound the number of responses.

We now present an example response collection mechanism
that gives reasonably good bounds on the above mentioned
efficiency metrics. According to this mechanism, the querier
starts the topology discovery with an initial TTL value of one.
In this round, the querier learns the number of children that the
queried router has on the tree. In the next round, the querier
uses a TTL value large enough to reach the children of this
router on the tree. At the end of this round, the querier re-
ceives responses from the routers on the second level (children
of the first queried router). At this point, the querier sends par-
allel query messages to each of these routers with TTL values
large enough to reach their children only. We call these par-
allel roundsphases. Therefore, by running parallel queries,
the querier discovers the tree topology level by level until it
reaches edge routers at the receiver sites. Consequently, in
this mechanism, the number of responses in each round (effi-
ciency metric 3 above) is bounded and this bound is equal to
the given TTL value.

In this topology discovery approach, the number of rounds
is equal to the depth of the tree,depthmax. But this infor-
mation may not be known at the querier site initially. In-
stead, we can approximate this value by the maximum path
length in the network,depthnetwork. This gives us an upper
bound on the number of rounds (efficiency metric 2 above)
needed for topology discovery. Finally, in terms of the topol-
ogy discovery time, due to the parallelism used, this time
is bounded bydepthmax ∗ RTTmax whereRTTmax is the
maximum round trip time between two systems in the net-
work. Since the querier does not knowdepthmax for the
tree, we can approximate it withdepthnetwork. As a result,
depthnetwork ∗ RTTmax gives an upper bound for the tree
topology discovery time (efficiency metric 1 above).

This response collection mechanism works very similar to
the SNMP-based topology discovery mechanism and there-
fore it may have similar efficiency behavior. However, as we
will see in Section VII, when used withnr-response, this ap-
proach out-performs all of the alternative approaches in all of
the efficiency metrics.

VII. E VALUATION

In this section, we evaluatetracetree. First, we study the
effect of several parameters on topology discovery. These in-
clude multicast tree shape, the initial TTL value oftracetree
request packets, and the existence of non-compliant routers in

the multicast tree. In addition, we comparetracetreeto other
alternatives in terms of topology discovery time and topology
discovery overhead. Most of our evaluation is based on sim-
ulations. At the end of the section, we provide a discussion
justifying the reasons for our evaluation approach. In the eval-
uations, when appropriate, we simulate the topology discovery
techniques using the ns-2 network simulator [20]. We generate
realistic multicast tree topologies using two different data sets
collected from the Internet. We start the section by explaining
these data sets.

A. Data Set

In our simulations, we use two sets of multicast tree topolo-
gies. The first set of trees are generated usingmwalk[17] with
realistic multicast network topology maps. These maps were
collected by tracing multicast paths between three different
source sites and a large number of receiver IP addresses [17].
The sources were located at Georgia Tech (GaTech), UC-
Santa Barbara (UCSB), and University of Oregon (UofO). The
receiver IP addresses have been known to have participated in
multicast groups at some point over the last 10 years [21]. The
mwalktool provides an interface that is used to generate mul-
ticast tree topologies for a given number of receivers. The tool
randomly chooses a number of IP addresses as receivers and
then constructs a multicast tree. Sincetracetreeworks with
internal routers and does not deal with receivers, we remove
the session receivers and use only the resulting tree topologies
for our simulations. Usingmwalk, we were able to generate
multicast trees with sizes up to 900 nodes.

The second data set was collected by running unicast tracer-
oute queries from our site at UT Dallas to a large number
of remote sites. We used the collected unicast path infor-
mation to create multicast tree topologies. Our preliminary
analysis on the degree, depth and branching characteristics of
these tree topologies showed close similarity to the previously
reported multicast tree characteristics [17]. The main moti-
vation for generating the second data set has been to gener-
ate realistic multicast tree topologies with larger sizes. For
this, we used network prefix information from BGP routing
table entries and tried to randomly generate valid IP addresses
from these network prefixes. Then, for each IP address, we
checked if the address is valid by using the unicastping tool.
Next, we tried to run traceroute queries to collect the network
path toward each address. We collected around 2,500 alive
IP addresses and only 1,222 of them had complete traceroute
information (i.e. all the routers on the path returned ICMP
TIME EXCEEDED responses). We used the collected uni-
cast path information to form amothertree and generated a
number of multicast trees from this tree similar to themwalk
approach described above. Ideally, using this approach, we
could have collected large tree topologies. However, due to
high memory requirements, we were not able to run simula-
tions with tree topologies larger than 1,554 nodes.

For each tree topology, the querier is located at the root of
the multicast tree. In addition, we use BGP tables to map IP
addresses to their corresponding AS numbers. Based on this
mapping, we divide the tree topologies into a backbone net-

8 IEEE/ACM TRANSACTIONS ON NETWORKING

work and edge networks and assign random link delays from
0-5 ms interval to edge network links and random link delays
from 5-20 ms interval to backbone network links. Figure 4
shows an example tree topology collected bymwalk.

B. Effect of Tree Shape on Topology Discovery

In this subsection, we look at the effect of tree shape on
the performance oftracetreetopology discovery. Intrace-
tree, a request packet is assigned an initial TTL value. This
value indicates the maximum number of responses to be re-
trieved from the routers in one round. However, due to the
shape of the multicast trees, the actual number of responses
received may be smaller. This is related to scope calcula-
tions performed at on-tree routers. Since on-tree routers do
not know the topology of the multicast sub-tree below them-
selves, they optimistically divide the remaining number of ex-
pected responses equally among their downstream neighbors.
However, a branch of the sub-tree rooted at a router may have
fewer routers than the expected number of responses from that
branch. This situation contributes to the difference between
the expected and the actual number of responses collected in a
round. For example, in Figure 4, we have a sample tree topol-
ogy with 42 routers. The number adjacent to each link shows
the IP TTL values of thetracetreerequest packets when they
arrive at these routers. For our topology discovery procedure,
these numbers also indicate the number of responses expected
from the sub-tree below these links. According to this fig-
ure, we see that thetracetreerequest packets have TTL values
larger than one when reaching the leaf routers 1, 12, and 17.
The topology discovery prematurely stops due to scope expi-
ration at routers 21 and 36. Even though the initial TTL value
(100) is larger than the size of the multicast tree (42), the shape
of the tree and the lack of knowledge at individual routers pre-
vents us from discovering the tree topology in one round.

One approach to reduce the difference between the initial
TTL value and the number of returned responses is to use par-
allel queries with smaller TTL values. The intuition here is
that as we decrease the TTL value, the possibility thattrace-
tree request packets with large TTL values reach leaf routers
decreases. Therefore, the number of returned responses gets
closer to the initial TTL value. First, the querier sends the very
first query with the initial TTL value and gets a number of re-
sponses from on-tree routers. Then, the querier identifies a
number of on-tree routers to send additional query messages.
At this point, instead of sending new queries sequentially to
each of these on-tree routers with the initial TTL value, the
querier divides the initial TTL value among the new queries
and sends the queries to the set of routers simultaneously. This
way, the querier runs a number of parallel queries and still
controls the amount of feedback coming from on-tree routers.
Note that this approach essentially reduces the number of se-
quentialtracetreequeries and consequently the time required
to discover the tree topology. This is desirable in cases where
we need to run periodictracetreequeries to detect changes in
a multicast tree topology.

In order to observe the effect of initial TTL value on topol-
ogy discovery, we run simulations with different initial TTL

values (TTL values of 25, 50, 75, 100, 150, 200, 255). Fig-
ure 5 shows the ratio of the number of returned responses to a
given initial TTL value (response-to-TTL ratio) for TTL val-
ues of 25, 100, and 255 for both data sets. According to this
figure, as the initial TTL value decreases, the number of re-
turned responses approaches the initial value. Considering the
fact that multicast forwarding trees can be significantly unbal-
anced, these results support our arguments on using parallel
tracetreequeries with smaller TTL values. The difference ob-
served in two figures is due to the specific characteristics of
the two data sets.Mwalk data depends on the current/recent
multicast backbone topology in the Internet. Compared to the
overall Internet topology, the existing multicast backbone is
smaller and the number of multicast nodes with close proxim-
ity to each other is greater. Therefore, most of the individual
tree topologies generated with this data set had few receivers
that were very close to the root (e.g., see node 1 in Figure
4). As we mentioned above, due to the TTL assignment for
tracetreerequest packets, such receivers affect the response-
to-TTL ratio. On the other hand, in the traceroute data set, the
IP addresses were chosen from a much larger set and the num-
ber of receivers close to the source was much smaller. This
observation suggests that the response-to-TTL ratio is likely
to improve as the multicast becomes a ubiquitous service in
the Internet.

C. Effect of Non-Compliant Routers on Discovery

Tracetreenon-compliant routers may affect topology dis-
covery. As we discussed before, non-compliant routers use the
standard TTL decrement operation and this may interfere with
the scoping mechanism used fortracetreerequest packets. In
this part of our evaluation, we run simulations to observe the
effect of non-compliant routers on the number of responses
collected in a round. In the simulations, we select a group
of routers as non-compliant with probabilities 10%, 50%, and
75%. For this we use two different approaches. In the first ap-
proach, we randomly choose a number of routers as being non-
compliant. This approach simulates a case wheretracetree-
enabled routers are being incrementally deployed by all ISPs.
In the second approach, we first randomly choose a number of
Autonomous Systems (ASes) that the multicast tree spans and
then mark all the routers in these ASes as non-compliant. This
simulates an inter-AS level partial deployment.

In our simulations, we runtracetreestarting from the root
of the tree with an initial TTL value of 100. Initially, we ran
simulations to get the number of responses in a normal opera-
tion case (i.e. 0% non-compliant case). In the second step, we
ran simulations to see the effect of different ABF values on
controlling feedback implosion. We used three ABF values:
1, 1.42, and 2. These values correspond to under estimating,
correctly estimating (1.42 is the average ABF value reported
in [17]), and over estimating the ABF values respectively.
According to Figure 6, when the non-compliant rate is small
(10%), the ABF-based TTL re-computation seems to be quite
effective. In addition, when the ABF value is under or over es-
timated, the results do not seem to cause significant variations
in the number of responses returned to the querier. If we as-

SARAC AND ALMEROTH: TRACETREE: A SCALABLE MECHANISM TO DISCOVER MULTICAST TREE TOPOLOGIES IN THE INTERNET 9

0

0.2

0.4

0.6

0.8

1

 0 100 200 300 400 500 600 700 800 900N
um

 r
es

po
ns

es
 to

 in
iti

al
 T

T
L

ra
tio

Topology size

For mwalk dataset

TTL=25
TTL=100
TTL=255

0

0.2

0.4

0.6

0.8

1

 0 200 400 600 800 1000 1200 1400 1600N
um

 r
es

po
ns

es
 to

 in
iti

al
 T

T
L

ra
tio

Topology size

For traceroute dataset

TTL=25
TTL=100
TTL=255

Fig. 5. Num. of responses to initial TTL ratio.

3

10

100

1K

 0 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 r

es
po

ns
es

Topology size

Mwalk data, init TTL:100, 10% non-compl

3

10

100

1K

 0 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 r

es
po

ns
es

Topology size

Mwalk data, init TTL:100, 50% non-compl

3

10

100

1K

 0 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 r

es
po

ns
es

Topology size

Mwalk data, init TTL:100, 75% non-compl

3

10

100

1K

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 r

es
po

ns
es

Topology size

Traceroute data, init TTL:100, 10% non-compl

0% non-compl
AS non-compl,abf=1

Random non-compl,abf=1

3

10

100

1K

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 r

es
po

ns
es

Topology size

Traceroute data, init TTL:100, 50% non-compl

AS non-compl,abf=1.42
Random non-compl,abf=1.42

3

10

100

1K

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 r

es
po

ns
es

Topology size

Traceroute data, init TTL:100, 75% non-compl

AS non-compl,abf=2
Random non-compl,abf=2

Fig. 6. Effect of non-compliant routers.

sume that this case (10% non-compliant rate) corresponds to
a wide scale deployment oftracetree, the results clearly show
the effectiveness of ABF-based TTL re-computation. On the
other hand, as the rate of non-compliant routers increase, the
selected ABF value plays more significant role in controlling
the response implosion. An under estimation (ABF=1) usually
results in a significantly large number of responses, especially
for the larger tree topologies. On the other hand, an over es-
timation (ABF=2) usually causes significant reductions in the
number of responses, especially for smaller tree topologies.
Finally, according to the figures, for most of the tree topolo-
gies the ABF of 1.42 results in a smaller number of responses
and therefore helps prevent response implosion. We also note
that non-compliant routers do not always result in an increase
in the number of responses.

D. Implementation of Topology Discovery Approaches

In this subsection, we describe our implementations of al-
ternative topology discovery approaches. We evaluated an
improved version ofmtrace, the standard SNMP-based ap-

proach, and thenr-respondingversion oftracetree.

As a general policy, we try to discover a tree topology in
the shortest possible time. For this we use the maximum pos-
sible parallelization for each alternative approach. However,
in order to prevent response implosion, we divide the topol-
ogy discovery task into rounds and usea maximum threshold
valuefor the expected number of responses in each round. A
round includes sending the query messages to the network and
collecting all the responses. Inmtraceand SNMP approaches,
the maximum threshold value limits the number of responses
received from on-tree routers. In thetracetreeapproach, the
threshold value limits the initial TTL values used in the re-
quest packets. Having mentioned this policy, next we briefly
describe the implementation of each alternative approach.
Mtrace-based approach:For each round, the querier sends
parallelhop-by-hop mtracequeries to the edge routers at the
receiver sites. The number of such queries is limited by the
maximum threshold value. That is, at each round, we send out
at mostthresholdmany queries and expect to receive at most
that many responses. In this approach, a path discovery stops

10 IEEE/ACM TRANSACTIONS ON NETWORKING

at a branching router on the multicast tree that has already
been traced by anothermtracerequest. This prevents us from
incurring redundant overhead during the topology discovery.
SNMP-based approach:In this approach, starting from the
first hop router at the session source site, the querier sends
SNMP queries to on-tree routers and learns the identities of
down stream routers. In the next round, it sends parallel
queries to these routers to get similar information. This way,
the topology discovery progresses level by level. The number
of parallel queries is limited by the maximum threshold value.
Tracetree-nrapproach: This approach uses thenr-response
mechanism in which the relay routers append their responses
to the request packet and forward it on the tree. Non-relay
routers send (partially) collected tree topology information
back to the querier. First, the querier sends a query to the first
hop router with aTTLnr value that is equal to themaximum
threshold value. The first hop router sends its response back
to the querier and then forwards atracetreerequest packet on
the tree. Relay routers append their information to the re-
quest packets and forward them on the tree. Branching and
leaf routers send the accumulated path information back to the
querier. The information each branching/leaf router sends es-
sentially includes path information from the root router (or the
previous branching router) to the current router. In addition,
each branching router includes its out-going degree. After re-
ceiving these responses, the querier sends new query messages
to these branching routers. Based on the branching informa-
tion that the querier learns from the incoming responses, it
divides themaximum threshold valueamong the branching
routers and sends parallel queries to these routers. Therefore,
the number of parallel queries in this approach is controlled
such that the number of expected responses is limited by the
maximum threshold value.

E. Topology Discovery Time

In this section, we compare the topology discovery times
of the alternate approaches. Topology discovery time highly
depends on the shape of the multicast tree and a number of
parameters specific to each approach. More specifically, in
the case oftracetree, the branching factor of internal tree
routers, the number of responses requested in each round (by
the querier), and the round parallelization factor affect the
topology discovery time. Similarly, for themtrace-based ap-
proach the number of leaf routers, and for the SNMP-based
approach the branching factor of internal tree routers affect
the topology discovery time.

For comparison, we run simulations on our sample tree
topologies. In the simulations, we use themaximum thresh-
old valuesas a common parameter across all the alternative
approaches. We run simulations with six different threshold
values: 25, 50, 75, 100, 200, and 255. It is expected that as the
threshold value gets larger, the topology discovery time short-
ens. In general, we would like to discover tree topologies in
the shortest time while preventing response implosion at the
querier site. From this perspective, having threshold values
as a simulation parameter provides a means to perform a fair
comparison among the alternative approaches. But, in reality,

achieving the maximum parallelism bounded by the thresh-
old value may not always be possible. In the case ofmtrace
and SNMP, the number of nodes that can be queried/traced
in parallel may be less than the given threshold value. In the
case oftracetree-nr, we may encounter a different situation.
According to Figure 5, for large initial TTL values (100 or
255), the number-of-responses-to-TTL ratio (response-to-TTL
ratio) may be relatively small (e.g., it is less than 0.6 for the
mwalkdata set). Based on this observation, for cases in which
we want tracetree-nrto return a relatively large number of
responses (100 or more), we can choose the TTL value by
considering theresponse-to-TTL ratioand increase the TTL
value by some small factor. Even though we do not use this
scaling in the simulations, we believe that the performance of
tracetree-nrcould be further improved.

In Figure 7 we show the results of the simulations for the
cases withmaximum threshold valuesof 25, 100, and 255
only1. Other cases present similar behavior. According to the
figures, themtrace-based approach takes the longest time for
a majority of the cases and it is followed by the SNMP-based
approach. Even though increasing thethresholdvalue reduces
the topology discovery time for these approaches, it does not
seem to affect the relative performance between them for the
majority of the tree topologies. In addition, increase in the
thresholdvalue does not affect the topology discovery time for
relatively small tree topologies. This is because thethreshold
value of 25 or 100 is already sufficient to achieve the maxi-
mum potential parallelism for these cases. Finally, we remind
the reader that using themtrace-based approach requires that
we know the identities of all the session receivers in the group.
However, in practice, this is likely to be very diffficult(see Sec-
tion II).

The tracetree-nrapproach performs better than the other
two approaches. In addition, its performance improves as the
thresholdvalue increases. The performance gain intracetree-
nr is due to the fact that only the non-relay (branching and
leaf) routers send their responses back to the querier. Accord-
ing to our preliminary analysis, non-relay routers form, on av-
erage, 18% of the topology size in our sample tree topologies.
This is also in accordance with the finding of the two previ-
ously mentioned studies [17], [19].

One factor that may affect the above results is the possibil-
ity of request and/or response message losses during topology
discovery. These losses may cause delays in topology discov-
ery. In general, due to the parallelism that we use in each of
the alternative approaches, it is difficult to evaluate the effect
of such losses for an arbitrary case. However, in the worst
case, loss of a request or a response message delays the topol-
ogy discovery time by one round for all approaches.

F. Topology Discovery Overhead

In this section, we compare the tree topology discovery
techniques based on their overhead. We divide the topology
discovery overhead into three parts: (1) router overhead, (2)

1Due to large memory requirements, we were not able to successfully
complete SNMP-based simulations for large tree topologies (trees with
more than 1,280 nodes) for the traceroute data set.

SARAC AND ALMEROTH: TRACETREE: A SCALABLE MECHANISM TO DISCOVER MULTICAST TREE TOPOLOGIES IN THE INTERNET 11

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900

T
im

e
to

 tr
ac

e
(s

ec
)

Topology size

Mwalk dataset, initial TTL value: 25

mtrace
snmp

tracetree-nr

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900

T
im

e
to

 tr
ac

e
(s

ec
)

Topology size

Mwalk dataset, initial TTL value: 100

mtrace
snmp

tracetree-nr

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900

T
im

e
to

 tr
ac

e
(s

ec
)

Topology size

Mwalk dataset, initial TTL value: 255

mtrace
snmp

tracetree-nr

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600

T
im

e
to

 tr
ac

e
(s

ec
)

Topology size

Traceroute dataset, initial TTL value: 25

mtrace
snmp

tracetree-nr

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600

T
im

e
to

 tr
ac

e
(s

ec
)

Topology size

Traceroute dataset, initial TTL value: 100

mtrace
snmp

tracetree-nr

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600

T
im

e
to

 tr
ac

e
(s

ec
)

Topology size

Traceroute dataset, initial TTL value: 255

mtrace
snmp

tracetree-nr

Fig. 7. Time to discover tree topologies (in seconds).

querier overhead, and (3) network overhead. The router over-
head refers to the amount of work that routers perform upon
receiving a topology discovery request.

In order to understand the relative performance of the var-
ious approaches, we examine the number of visits to on-tree
routers. We assume that for all approaches, the processing
overhead at each visit is comparable. Then, we compare the
total number of visits to on-tree routers. This gives us a simple
yet useful metric to compare router overhead. In the SNMP-
based approach, each router is visited only once. In the case
of tracetree, each router is visited once during a round. If the
discovery process takes more than one round, each additional
round increases the number of visits by one. In the case of the
mtrace-based approach, routers on a multicast path are visited
one or more times depending on their location in the multicast
tree.

Figure 8-a shows the total number of visits to routers for
our sample data sets for an initial TTL of 100. Other cases
(TTL of 25 and 255) presents similar results. According to
the figures, themtrace-based approach has the largest number
of visits to the routers in all of the cases. For the SNMP-based
approach, the number of visits is equal to the topology size.
Tracetree-nrperforms close to the SNMP-based approach.

Querier overhead refers to the number of responses received
by the querier during topology discovery. In the SNMP-based
approach, this is equal to the topology size. Intracetree-nr,
it is given by the sum of the number of branching and leaf
routers and the number of rounds to discover the tree topology.
Finally, for themtrace-based approach, the total is equal to the
number of (mtrace) rounds to discover the topology. Figure 8-
b shows this overhead for our sample tree topologies used in
the simulations.

Finally, network overhead refers to the number of messages,
including query and response messages, exchanged between

the querier site and on-tree routers during topology discov-
ery. Figure 8-c presents the network overhead of the various
approaches. According to the figures,tracetree-nrincurs sig-
nificantly less overhead than the others.

G. Discussion

Our evaluation so far has consisted mainly of simulations.
We feel that our work would also benefit from analytical
evaluations in understanding various protocol characteristics.
However, in our evaluation we found thattracetreeopera-
tion strongly depends on various characteristics of the mul-
ticast tree topologies including the branching characteristics
of the routers, the depth characteristics of receivers, and the
number and the location of non-compliant routers on the tree.
Since these characteristics vary across different multicast tree
topologies, it is difficult to build a statistical model oftracetree
operation. In this section we use some assumptions to develop
a closed form formula to compute the number of rounds to
discover a tree topology based on a given initial TTL value
TTLinit.

For our analysis, we assume that multicast trees are bal-
anced trees and internal tree nodes have an out-degree of ABF.
We also assume that we have a very good estimate about the
depth of the tree,tree depth. Even though these assumptions
are unrealistic, they enable us to derive basic analytical results
abouttracetreeperformance. For a givenTTLinit and ABF
values, assuming a balanced tree, the equation

TTLinit =
n1∑

i=0

ABF i (3)

holds. From this equation, we can compute the level of the
treen1 thattracetreerequest can reach as

n1 = logABF (
TTLinit(ABF − 1) + 1

ABF
). (4)

12 IEEE/ACM TRANSACTIONS ON NETWORKING

0

2K

4K

6K

8K

 0 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 v

is
its

 to
 r

ou
te

rs

Topology size

Mwalk dataset, initial TTL value: 100

mtrace
snmp

tracetree3

0

.5K

1K

1.5K

2K

 0 100 200 300 400 500 600 700 800 900N
um

be
r

of
 r

es
po

ns
es

 to
 q

ue
rie

r

Topology size

Mwalk dataset, initial TTL value: 100

mtrace
snmp

tracetree-nr

0

1K

2K

3K

4K

 0 100 200 300 400 500 600 700 800 900N
um

 o
f m

es
sa

ge
s

ex
ch

an
ge

d

Topology size

Mwalk dataset, initial TTL value: 100

mtrace
snmp

tracetree-nr

0

2K

4K

6K

8K

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 v

is
its

 to
 r

ou
te

rs

Topology size

Traceroute dataset, initial TTL value: 100

mtrace
snmp

tracetree3

0

.5K

1K

1.5K

2K

 0 200 400 600 800 1000 1200 1400 1600N
um

be
r

of
 r

es
po

ns
es

 to
 q

ue
rie

r

Topology size

Traceroute dataset, initial TTL value: 100

mtrace
snmp

tracetree-nr

0

1K

2K

3K

4K

 0 200 400 600 800 1000 1200 1400 1600N
um

 o
f m

es
sa

ge
s

ex
ch

an
ge

d

Topology size

Traceroute dataset, initial TTL value: 100

mtrace
snmp

tracetree-nr

(a) Num. visits to routers. (b) Num. responses reaching querier. (c) Num. messages exchanged.

Fig. 8. Overhead comparison.

After collecting the responses in the first round, the querier
will continue the topology discovery by sending additional
query messages to routers at leveln1. The number of routers,
m, at leveln1 is given by

m = ABFn1 . (5)

Based on this, the querier will compute the TTL values for the
queries that it sends to the routers at this level as

TTL1 =
TTLinit

ABFn1
. (6)

In general, the number of levels thattracetreespans in a
round is given by

ni = logABF (
TTLi(ABF − 1) + 1

ABF
). (7)

Considering the fact that

TTLi =
TTLinit

ABF
∑i

j=0
nj

, (8)

we have

ni = logABF (
TTLinit(ABF − 1) + 1

ABF
1+

∑i

j=0
nj

). (9)

Finally, when
k∑

i=1

ni = tree depth, (10)

k gives the number of rounds to discover the topology.
According to the above derivation, by using Equations 9 and

10, a querier can estimate the number of rounds and therefore

the time to discovery a tree’s topology. But one difficulty in
this approach is that the above equality depends on certain as-
sumptions we made at the beginning of our derivation. These
assumptions may not always hold for the actual tree topologies
used in the multicast applications.

Finally, in considering whether a prototype deployed in the
Internet would add to our understanding oftracetree, we felt
that an experimental evaluation would require a large scale de-
ployment to see its performance under various conditions. A
prototype implementation would only show the basic proof-
of-concept but would not go far enough to reveal the true chal-
lenges of deployingtracetree. Because of these difficulties,
our evaluation mainly focused on using simulations with real-
istic multicast tree topologies.

VIII. D EPLOYMENT ISSUES

In this section, we discuss potentialtracetreedeployment
issues. One important issue is security in terms of usingtrace-
treefor launching denial-of-service attacks. This is possible if
the tracetreefunctionality is accessible by any user. In Sec-
tion IV-D, we presented mechanisms to make launching at-
tacks more difficult and discussed how to reduce the effect of
potential attacks. Ideally we expect these measures to pro-
vide sufficient assurance for the deployment oftracetreein
the Internet. However, these mechanisms may not always be
satisfactory for all users (ISPs). Considering this possibil-
ity, instead of completely turning offtracetreefunctionality in
routers, concerned users can use a more controlled operation
environment fortracetree. In this scenario, we use an agent-
basedtracetreetopology collection mechanism similar to the
Multicast Consolidated Proxy Monitor (MCPM) [6]. Figure 9
shows the steps and Figure 10 describes each steps. In this ap-
proach, each domain allocates a well-knowntracetree agent
responsible for running alltracetreequeries in the local do-

SARAC AND ALMEROTH: TRACETREE: A SCALABLE MECHANISM TO DISCOVER MULTICAST TREE TOPOLOGIES IN THE INTERNET 13

1
2

3

4

56

1

2

3

4

5

6

7

8

9

Domain A

Domain B

Agent B

Agent A

Querier

Fig. 9. Agent-basedtracetreeoperation.

1. Querier sends a query packet to first hop router 1.
2. The first hop router 1 responds with the address of the

thetracetreeagent Agent A.
3. Querier sends its query to Agent A.
4. Agent A sends a query to first hop router 1. During topology

discovery, on-tree routers in Domain A send their responses
back to Agent A.

5. When router 4 receives a request from router 3 it sends
the address of Agent B to request destination i.e. Agent A.

6. Agent A forwards query to Agent B.
7. Agent B sends a query to router 4. During topology

discovery, on-tree routers in Domain B send their responses
back to Agent B.

8. Agent A sends the collected responses back to the querier.
9. Agent B sends the collected responses back to the querier.

Fig. 10. Topology discovery steps for Figure 9.

main. All the routers are configured to accepttracetreequery
messages only from the localtracetreeagent in their domain.
Sincetracetreeis limited to supporting requests coming from
a well-known agent site, secure communication primitives can
be used to provide authenticated message exchange between
the agent site and the routers. Once atracetreeagent receives a
query packet, it runs the query in the local domain, collects the
responses, and sends them back to the querier. In cases where
a tree topology spans multiple domains,tracetreeagents in
adjacent domains communicate query messages between each
other so that atracetreeagent in each domain traces the por-
tion of the multicast tree in its own domain and then sends
a response back to the original querier. In this case, from
the querier’s point-of-view, a given query results in responses
equal to the number of domains spanned. We believe that this
number should be small and therefore should not pose a sub-
stantial threat in terms of denial-of-service attacks. In addi-
tion, in an agent-based deployment scenario,tracetreeagents
can cache the collected topology and use this information for
subsequent queries. Moreover, agents can perform additional
operations such as hiding the actual IP addresses of the routers
in order to protect privacy of the internal network topology.
In summary, even though we prefer a native/standard deploy-
ment fortracetree, we expect the agent-based deployment to
provide a reasonably good assurance for ISPs to support this
service in their networks.

Another important issue is the interaction oftracetreewith
the multicast routing protocols.Tracetreeuses existing mul-
ticast forwarding states in the routers. The multicast routing
protocol deployed in the network may be using unidirectional
or bidirectional trees and may be building source specific or
shared trees. In either case,tracetreediscovers a (sub)tree
rooted at a queried on-tree router with respect to a given mul-
ticast source in the group. In this respect, for multicast rout-
ing protocols that use uni-directional forwarding trees (such
as DVMRP and PIM),tracetreeis independent of the multi-
cast routing protocol used to create the forwarding states in
the routers and discovers the subtree (with respect to a given
source or RP) rooted at the queried router. For multicast rout-
ing protocols that use bi-directional shared trees (such as Core
Based Trees (CBT) [22]), due to lack of source-specific in-
coming interface information at on-tree routers,tracetreedis-
covers the overall forwarding tree rooted at the queried on-tree
router.

Tracetreeis insensitive to packet encapsulations used in
some of the multicast routing protocols such as the Multicast
Source Discovery Protocol (MSDP) [23] and Protocol Inde-
pendent Multicast-Sparse Mode (PIM-SM) [24]. In MSDP,
when a new source starts sending to a multicast group, the
Randezvous Point (RP) in the source domain uses MSDP
Source Announcement (SA) messages to announce this new
source to the RPs in remote domains. Later on, when the
group receivers in these remote domains learn the existence
of this new source, they use PIM-SM to establish a multicast
forwarding path toward this new source. Therefore,tracetree
cannot effectively return the actual multicast tree topology be-
tween this new source and the remote group receivers until
the underlying forwarding tree is established. Similarly, in the
case of PIM-SM, a first hop router at a new source site encap-
sulates the packets and tunnels them to the RP. If and when a
tracetreerequest is forwarded in this way, it cannot discover
the path between the first hop router and the RP directly. How-
ever, the querier can easily collect this information by running
an mtrace between the two.

Finally, tracetreedepends on routers to participate in topol-
ogy discovery. From this perspective, during the initial de-
ployment of the service we may have a large number of non-
compliant routers in the network. In this situation,tracetree
may not be very effective. However, as with every other new
service that is developed and deployed in the network, it is rea-
sonable to expect that after a transition period,tracetreewill
become a default function provided by all router vendors, and,
therefore when deployed in a network, it will perform well.

IX. CONCLUSIONS

In this paper, we have proposed a mechanism,tracetree,
for multicast tree topology discovery.Tracetreerequires rela-
tively little additional router support and relies only on for-
warding state. We argued that the alternative approaches
(SNMP andmtrace-based approaches) have requirements or
limitations that significantly limit their use for topology dis-
covery. A benefit oftracetreeis that it provides tight con-
trol on the number of request messages that are forwarded

14 IEEE/ACM TRANSACTIONS ON NETWORKING

throughout the tree. In this respect, we discussed a number
of issues related totracetree-based topology discovery. In
addition, we have evaluatedtracetreeby comparing it to the
alternative approaches. We have shown thattracetreeis com-
parable or superior to the alternative approaches in terms of
topology discovery overhead and topology discovery time. In
addition,tracetreecan be used in both intra- and inter-domain
and it can tolerate the existence of non-compliant routers in the
multicast tree. We believe that our technique provides a scal-
able and efficient way to discover a multicast tree’s topology
in real-time while requiring marginal additional functionality
in routers.

Acknowledgements
We thank Hakan Ferhatosmanoglu of the Ohio State Univer-
sity for providing helpful comments on this work. We also
thank our editor Ramesh Govindan and the anonymous ToN
reviewers for their constructive feedback on this paper.

REFERENCES

[1] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “De-
ployment issues for the IP multicast service and architecture,”IEEE
Network, vol. 14, no. 1, pp. 10–20, January/February 2000.

[2] K. Sarac and K. Almeroth, “Supporting multicast deployment efforts:
A survey of tools for multicast monitoring,”Journal of High Speed
Networks, Special Issue on QoS for Multimedia on the Internet, vol.
9, no. 3,4, pp. 191–211, 2000.

[3] S. Paul, K.K. Sabnani, J.C. Lin, and S. Bhattacharyya, “Reliable mul-
ticast transport protocol (RMTP),”IEEE Journal on Selected Areas in
Communications, vol. 15, no. 3, pp. 407–421, April 1997.

[4] S. Jagannathan, K. Almeroth, and A. Acharya, “Topology sesitive
congestion control for real-time multicast,” inWorkshop on Network
and Operating System Support for Digital Audio and Video (NOSS-
DAV), Chapel Hill, North Carolina, USA, June 2000.

[5] A. Adams, R. Bu, R. Caceres, N. Duffield, T. Friedman, J. Horowitz,
F. Lo Presti, S. Moon, V. Paxson, and D. Towsley, “The use of end-to-
end multicast measurements for characterizing internal network be-
havior,” IEEE Communications, May 2000.

[6] A. Kanwar, K. Almeroth, S. Bhattacharyya, and M. Davy, “Enabling
end-user network monitoring via the multicast consolidated proxy
monitor,” in SPIE ITCom Conference on Scalability and Traffic Con-
trol in IP Networks, Denver, Colorado, USA, August 2001.

[7] S. Ratnasamy and S. McCanne, “Inference of multicast routing trees
and bottleneck bandwidths using end-to-end measurements,” inIEEE
Infocom, New York, New York, USA, March 1999.

[8] N.G. Duffield, J. Horowitz, and F. Lo Presti, “Adaptive multicast
topology inference,” inIEEE Infocom, Anchorage, Alaska, USA,
April 2001.

[9] J. Case, K. McCloghrie, M Rose, and S. Waldbusser, “Protocol oper-
ations for version 2 of the simple network management protocol (SN-
MPv2),” Internet Engineering Task Force (IETF), RFC 1905, January
1996.

[10] D. Makofske and K. Almeroth, “Real-time multicast tree visualization
and monitoring,”Software–Practice & Experience, vol. 30, no. 9, pp.
1047–1065, July 2000.

[11] W. Fenner and S. Casner, “A ‘traceroute’ facility for IP multicast,” In-
ternet Engineering Task Force (IETF), draft-ietf-idmr-traceroute-ipm-
*.txt, July 2000, Work in progress.

[12] HP OpenView Network Management Solution, Available from
http://www.hpl.hp.com/.

[13] P. Sharma, E. Perry, and R. Malpani, “IP multicast operational net-
work management: design, challenges, and experiences,”IEEE Net-
work, vol. 17, no. 2, Mar-Apr 2003.

[14] H. Schulzrinne, S. Casner, R. Frederick, and Jacobson V., “RTP:

A transport protocol for real-time applications,” Internet Engineering
Task Force (IETF), RFC 1889, January 1996.

[15] H. Holbrook and B. Cain, “Source-specific multicast for IP,” Internet
Engineering Task Force (IETF), draft-ietf-ssm-arch-*.txt, November
2003, work in progress.

[16] D. Katz, “IP router alert option,” Internet Engineering Task Force
(IETF), RFC 2113, February 1997.

[17] R. Chalmers and K. Almeroth, “On the topology of multicast trees,”
IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 153–165,
February 2003.

[18] Y. Dalal and R Metcalfe, “Reverse path forwarding of broadcast pack-
ets,” Communications of the ACM, vol. 21, no. 12, pp. 1040–1048,
1978.

[19] JJ. Pansiot and D. Grad, “On routes and multicast trees in the Inter-
net,” ACM Computer Communication Review, vol. 28, no. 1, January
1998.

[20] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu, “Advances in
networki simulation,”IEEE Computer, vol. 33, no. 5, pp. 59–67, May
2000.

[21] K. Almeroth, “A long-term analysis of growth and usage patterns
in the Multicast Backbone (MBone),” inIEEE Infocom, Tel Aviv,
ISRAEL, March 2000.

[22] A. Ballardie, “Core based trees (CBT version 2) multicast routing,”
Internet Engineering Task Force (IETF), RFC 2189, September 1997.

[23] B. Fenner and D. Meyer, “Multicast source discovery protocol
(MSDP),” Internet Engineering Task Force (IETF), draft-ietf-msdp-
spec-*.txt, June 2003, work in progress.

[24] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, G. Liu, and L. Wei,
“PIM architecture for wide-area multicast routing,”IEEE/ACM Trans-
actions on Networking, pp. 153–162, Apr 1996.

Kamil Sarac is currently an assistant professor in
the Department of Computer Science at the Uni-
versity of Texas at Dallas. He obtained his Ph.D.
degree in Computer Science from the University
of California Santa Barbara in 2002. His research
interests include computer networks and proto-
cols, group communication, management and se-
curity of computer networks. He has served as
a reviewer for a number of journals and confer-

ences. He is a member of both the ACM and IEEE.

Kevin C. Almeroth is currently an associate pro-
fessor at the University of California in Santa
Barbara where his main research interests in-
clude computer networks and protocols, multi-
cast communication, large-scale multimedia sys-
tems, and performance evaluation. At UCSB,
Dr. Almeroth is a founding member of the Me-
dia Arts and Technology Program (MATP), Asso-
ciate Director of the Center for Information Tech-

nology and Society (CITS), and on the Executive Committee for the
University of California Digital Media Innovation (DiMI) program. In
the research community, Dr. Almeroth is on the Editorial Board of
IEEE Network and ACM Computers in Entertainment; has co-chaired
a number of conferences and workshops including the International
Conference on Network Protocols (ICNP), the Network and System
Support for Digital Audio and Video (NOSSDAV) workshop, the Net-
work Group Communication (NGC) workshop, and the Global Inter-
net Symposium; and has been on the program committee of numer-
ous conferences. Dr. Almeroth is serving as the chair of the Internet2
Working Group on Multicast, and is active in several working groups
of the Internet Engineering Task Force (IETF). He also serves on the
boards or directors and/or advisory boards of several startups includ-
ing Occam Networks, Techknowledge Point, NCast, and the Santa Bar-
bara Technology Group. He is a Member of the ACM and a Senior
Member of the IEEE.

