Supporting Multicast Deployment Efforts:
A Survey of Tools for Multicast Monitoring

Kamil Sara¢ and Kevin C. Almeroth
Department of Computer Science
University of California
Santa Barbara, California 93106-5110
{ksarac, almeroth}@cs.ucsb.edu

October 2000

Abstract

As the Internet is expected to better support multimedia applications, new services will need
to be deployed. An example of one of these next-generation services is multicast communica-
tion, the one-to-many delivery of data. Over the last ten years, multicast research as well as
deployment efforts have both been major areas of interest. In order to bridge the gap between
the initial deployment experiments and the availability of multicast as a robust network service,
there needs to be a full complement of multicast monitoring tools. In this paper we first survey
the debugging, modeling, and management tools that have evolved along side the Internet’s
multicast infrastructure. Through this survey, we have observed important generalizations in
three areas: (1) the challenges unique to monitoring multicast, (2) a methodology common to
many multicast monitoring tools/systems, and (3) a set of considerations important to the de-
velopment of new tools/systems. Using these generalizations we present two of our efforts to
evaluate multicast reachability in the Internet. We also use these generalizations to evaluate
some of the more recent efforts to develop large-scale management platforms.



1 Introduction

Traffic generated by multimedia-based applications have evolved into a significant portion of Inter-
net traffic[1]. As a result, there is a need to develop better mechanisms to support multimedia traffic
delivery. Imitially applications used the reliable file transfer service provided by the Transmission
Control Protocol (TCP). In addition to this service, one class of more recent multimedia-based
applications are delivering audio and video in real-time to potentially millions of receivers using a

multicast-capable version of the User Datagram Protocol (UDP).

Use of UDP is driven by the lack of a suitable transport-layer alternative. TCP is not an option
with its heavyweight logical connections, congestion control, and in-order style of reliable transfer.
By using UDP, critical services like congestion control, reliability, etc. need to be handled by the
application. Furthermore, neither congestion control nor reliability are easy problems to solve as
the semantics of these two services change in the face of the unique requirements of multimedia
traffic. Reliability is often less critical than real-time delivery. Congestion control is more difficult
because there is no feedback loop and because semantics are closely tied to TCP’s method of using
acknowledgments. Beyond these issues, challenges are created because of the need to improve
the Internet’s ability to handle real-time multimedia traffic. New network-services like quality-
of-service, security, multicast delivery, and in-the-network processing have all been proposed as

solutions.

Of particular interest is multicast communication. Multicast offers new opportunities to reach
tens, thousands, even millions of receivers. The fundamental service offered by multicast is to
solve the bandwidth bottleneck problem at the content server. Multicast allows one copy of each
packet to be sent from a source. The network then replicates it at key branching points along a
tree connecting all interested receivers. However, with the first bottleneck solved, others present
themselves. One is solving the problem of being able to monitor the quality and reachability of
potential receivers. The broader challenge is to effectively and efficiently monitor and manage

multicast traffic, groups, and participants.

Providing monitoring and management support for multicast is an important component of
building a robust Internet service. In this paper, we focus on monitoring and take the approach that
management, debugging, and modeling activities are all based on the kinds of data gathered from
monitoring efforts. “Management” is the process of making intelligent decisions on how to provision
networks and services; “debugging” is narrowly focused on solving problems immediately affecting
service; and “modeling” is the process of understanding temporal and spatial characteristics. We

believe these activities are critical to the successful deployment of a robust multicast service.



In this paper, we start by briefly describing the key multicast monitoring tools that have been
developed since multicast was first deployed in the Internet. The effort to classify and describe
the various tools gives us insight into how these tools have evolved, why they have evolved, their
weaknesses, and their strengths. To this end, we have developed a generic architecture and a
set of metrics to compare and contrast various monitoring systems. Both of these are useful
in understanding how tools relate to one another. As a way of exercising our architecture and
metrics, we present a case study focused on multicast reachability monitoring. The case starts
by examining sdr-monitor, a basic, easily deployable system that depended on existing MBone
application semantics. Lessons from sdr-monitor motivated the design of a more general protocol
called the Multicast Reachability Monitor (MRM) protocol. We describe these two systems in
detail, identifying the weaknesses of the first, and discussing how these weaknesses have been
addressed by the second. Finally, we also describe several other platforms useful for multicast

monitoring, again with the goal of assessing their strengths and weaknesses.

The remainder of this paper is organized as follows. Section 2 catalogs the set of early multicast
monitoring tools. In Section 3, we generalize the challenges and mechanisms related to multicast
monitoring. Section 4 is a case study specifically focused on reachability monitoring. Section 5

evaluates a number of additional monitoring systems. The paper is concluded in Section 6.

2 Early Multicast Monitoring Tools

In this section, we look at the early monitoring tools developed for various multicast network
monitoring tasks. These tools are primarily used for three closely related purposes: management,
debugging and modeling. Figure 1 shows a distribution of multicast monitoring tools based on this
classification. In this figure, the classes do not have strict boundaries between them—a monitoring
tool can belong to more than one class. Time progresses from top to bottom, starting with the
initial deployment of the Multicast Backbone (MBone) in 1992. 1997 marks the beginning of efforts
to deploy hierarchical multicast routing[2]. The relative proximity among the tools are based on
their functionality (horizontal proximity) and their introduction time (vertical proximity). The
solid lines show where one tool has significantly influenced another. These kind of relationships
exist because the later tool either (a) used the information produced by the earlier tool or (b) used
a collection technique similar to its predecessor. Finally, at the bottom of the figure, we show a

cloud including the potential candidates for next generation multicast monitoring systems.

Another useful characteristic for differentiating among the tools is how they perform their

monitoring. Most of the tools in this figure perform passive monitoring. This means that the tools



simply observe data as it already exists in the network. On the other hand, there are a number
of active monitoring tools (indicated with a “*’) that can create and use test data to perform their

monitoring functions. In the rest of this section, we briefly describe the tools in Figure 1.

2.1 Debugging Tools

Soon after the deployment of the MBone, there was a need to understand how well the infras-
tructure was doing and where problems were occurring. As a result, the first set of monitoring
tools developed were debugging tools. These tools were developed by researchers actively working
on deployment and maintenance of the early MBone. They had narrow focused functionality and
required an in-depth understanding about the operation of multicast routing protocols, state of the
MBone topology, and an ability to diagnose problems based on tool feedback. The tools included

in this category include the following;:

1. Mrinfo: The mrinfo tool reports on the tunnels and multicast-enabled interfaces for a router
or end-host running multicast routing code|3].

2. Mtrace: The mirace tool is used to return a snapshot of the set of links used to connect a
particular source with a particular destination[4]. Additional mirace options allow a user to
measure the number of multicast packets flowing across each hop. The mirace tool is one of
the best ways of discovering the flow of multicast packets through a network.

3. Rtpmon: The rtpmon tool is one of the more useful tools for monitoring active multicast
groups[5]. Rtpmon joins a particular multicast group address and receives feedback reports
from all receivers. These feedback reports are generated by group members using the Real-
time Transport Control Protocol (RT'CP) which is part of the Real-time Transport Protocol
(RTP)[6]-

4. Mhealth: The mhealth tool combines rtpmon and mirace and displays a real-time, graphical
representation of a particular group’s multicast tree including loss information[7, 8].

5. Dr. Watson: This tool allows a person debugging configuration problems to send, receive,
and monitor packets of various protocol types[9]. Of relevance to multicast is the ability to
test the Internet Group Management Protocol (IGMP)[10].

6. MultiMON: MultiMON, the TPmulticast Monitor, is a tool that collects, organizes, and
displays statistics about multicast packets flowing across a Local Area Network (LAN)[11].

7. Route Monitor: The Route Monitor tool is used to collect routing protocol messages for
the Distance Vector Multicast Routing Protocol (DVMRP). This information has been used
to identify a number of protocol implementation bugs[12].

The original MBone was a virtual flat network on top of the Internet. The rapid growth of
this virtual topology eventually began to suffer instability and scalability problems. Starting in

1997, this topology has transitioned to a hierarchical structure. This transition has spurred the



Management, Debugging and Modelling
via Active / Passive Monitoring

Monitoring

Management Debugging Modeling
mrmap

mrinfo mrdebug
rtpmon ,
N Mah's
mwatch Study

mstat mlisten
mview o
mrtree Dr. Watson Yanik's
Study
GDT MultiMON Handley's
Study
NetlQ’ S mhealth
Chariot RouteMonitor NIMI* .
mantra sdr-mon MantaRay MINC
HP's Otter
mmon
MRM*
HPMM mwalk

SNMP_NG

Next Generation
Multicast Monitoring
Tools/ Systems

* : can be used for active monitoring

Figure 1: Classification of multicast monitoring tools.



development of a new set of monitoring tasks: reachability monitoring among multicast enabled
domains and monitoring the functioning of the inter-domain multicast routing protocols. The

following are tools created to handle these new tasks:

8. Sdr-monitor: Sdr-monitor is a tool developed to monitor inter-domain multicast reachability[13,
14]. It is discussed in detail in Section 4.2.

9. Mantra: Mantra collects multicast routing table information from a number of Internet
backbone routers and parses this information to create a global view of various statistics
about the topology[15].

10. MantaRay, Otter: Both these tools, developed by the Cooperative Association for Internet
Data Analysis (CAIDA), are visualization tools. MantaRay is an interactive visualization tool
for the MBone topology[16], and Otter is a general-purpose topology visualization tool[17].
Otter is used in systems like Mantra.

11. MRM: The Multicast Reachability Monitor (MRM) protocol is a developing protocol which
aims to provide support for both intra- and inter-domain multicast monitoring tasks[18, 19].
MRM is discussed in detail in Section 4.3.

12. HPMM: The Hierarchical Passive Multicast Monitor (HPMM) system provides MRM-style
monitoring but implements more effective reporting mechanisms to avoid implosion[20].

2.2 Management Tools

The term management has become synonymous with the Simple Network Management Protocol
(SNMP)[21] and its Management Information Bases (MIBs)[22]. However, most of the early man-
agement activities conducted in the MBone were done without the assistance of SNMP. The reason
for this is a side effect of the way the MBone evolved. People working on the MBone were more
focused on establishing basic functionality than developing robust management tools. Instead of
developing standards for management information and then the tools to utilize this information,
efforts were focused on quickly creating effective tools. Developing SNMP-based tools is time con-
suming and it takes considerable time to standardize and implement MIBs. Solutions were needed
quickly and SNMP was not typically considered as an option. However, this trend is changing.
There has been a demand for more SNMP-based tools and some are becoming available. The set

of management tools developed to date include the following:

13. Mstat, mview, and mrtree: These three tools were developed at Merit Networks as proto-
types for SNMP-based multicast management([23]. Mstat is used to access multicast-related
MIBs. The collected information is presented as text-based tables that can then be used
by other tools. For example, muview is a tool that uses mstat to collect information about
multicast sessions. Muview then displays this information graphically. Mrtree uses cascaded
SNMP router queries to provide a text-based representation of a particular multicast group’s
topology.



14.

15.

16.

17.

2.3

GDT: The Global Distributed Troubleshooting (GDT) system provides mechanisms to detect
and report network problems across administrative domains[24, 25]. It is discussed in more
detail in Section 5.

Chariot: Chariot, originally developed by Ganymede Software, is a network performance test
tool that allows distributed, end-to-end performance tests anywhere in a network. It provides
a highly flexible way to test a wide variety of local and wide area networking environments
and infrastructures.

Mmon: Mmon is an SNMP-based commercial tool prototype developed at Hewlett-Packard
Labs[26]. The prototype automatically discovers and monitors the status of IP multicast
routers and topology. From a visual map, an operator can see the state of the multicast
infrastructure and query statistics about traffic activity.

SNMP _NG: The next generation of SNMP is designed to have better security, configuration
capabilities, and scalability[27]. SNMP_NG is discussed in more detail in Section 5.

Modeling Tools

Another use of monitoring tools is modeling various properties about network characteristics and

user trends. The collected information helps in understanding protocol behaviors, user trends and

multicast network characteristics. This information then can be used to refine protocol specifi-

cations, fine tune network configuration parameters, and derive link-level network performance

statistics. Modeling requires collecting long-term data and processing it to produce statistical re-

sults for various characteristics about the network. The following tools and studies fit into this

category:

18.

19.

20.

21.

22.

23.

Mrmap, mrdebug: These two tools were developed early in the history of the MBone to
help map and then debug the MBone[28]. While they are considered debugging tools, the
ability to show the multicast topology also makes them modeling tools.

Mwatch: The mwatch tool was another early tool to build a view of the MBone topology[29].
It worked by “walking” multicast-capable routers using the mrinfo tool.

Mah’s Study: Mah conducted one of the first studies on multicast traffic analysis[30]. The
study focused on the volume and types of traffic transiting Berkeley’s tunnel to the MBone.

Mlisten: Milisten is one of the early monitoring tools that collected group membership
information[31]. Information collected using mlisten has also been used to model long-term
multicast usage trends[32].

Yajnik’s Study: Yajnik, et al. have characterized a controlled MBone session by analyzing
packet loss statistics from 11 participating sites[33]. Their work used this data to examine
the spatial and temporal correlation between packet loss and links in the tree.

Handley’s Study: Handley has developed tools to log RTP/RTCP packets and collect
mtraces for an MBone session[34]. The data sets have been used to manually create a picture
of the multicast tree and collect various statistics about links in the tree.



24. MINC: The Multicast-based Inference of Network-internal Characteristics (MINC) project
identifies internal network performance characteristics based on end-to-end multicast measurements[35].
MINC uses RTCP based data reception reports to infer link-level loss rates and delay statistics
by exploiting the inherent correlation in performance observed by multicast receivers.

25. NIMI: The National Internet Measurement Infrastructure (NIMI) provides an architecture in
which a collection of measurement probes cooperate to measure various properties of Internet
paths and clouds[36]. NIMI is discussed in more detail in Section 5.

26. Mwalk: The muwalk tool is used to model multicast tree topology characteristics using
archived mtrace and mlisten data[37]. Multicast trees are characterized according to depth,
degree, and degree-at-depth metrics for a variety of generated and real data sets.

2.4 Limitations of Existing Tools

Early multicast monitoring tools mainly focused on debugging problems in the MBone. These
tools were developed by people closely involved in the ongoing deployment and management of the
MBone. In addition, the day-to-day management of the MBone was a relatively unique effort in that
these functions were handled via a mailing list. Discussions were typically informal with the main
responsibilities distributed among a few dedicated individuals. As a result, the debugging strategies
and the tools in use have been influenced significantly by the requirements of dealing with the day-
to-day problems that arose as the MBone grew. This evolutionary process has created several

problems:

e Dependence on Application Layer Data: Many early monitoring tools are dependent
on all group members using an application-layer protocol to exchange participant data. Ex-
amples of monitoring tools that rely on application-layer protocols include those that use
RTCP, e.g. rtpmon, mlisten, and mhealth. Another example is sdr-monitor which uses ses-
sion announcements sent using the Session Announcement Protocol (SAP)[38]. Dependencies
on these kinds of protocols create potential monitoring problems. In particular, difficulties
in accurately monitoring group statistics occur when not all decoding/display tools properly
implement the application-layer protocol. The accuracy of monitoring efforts is complicated
when group members have the ability to receive data without sending feedback information.

e Requiring Significant Multicast Expertise: Most of the tools developed during the
initial deployment of the MBone required an in-depth understanding of how multicast works.
The problem with this requirement is that a high proficiency in multicast operation is a
difficult skill to find in most Network Operation Center (NOC) personnel.

e Lack of SNMP-based Tools: Few of the early tools used SNMP as the mechanism to
gather data or monitor networks. Furthermore, there was little effort to develop multicast-
related MIBs, and even lesser effort to implement these in critical places in the network. As
a result, the gap between the techniques used by the multicast experts and the needs of those
expected to manage multicast networks has become even larger.

e Lack of Commercial Tools: There are only a few commercially available multicast mon-
itoring tools. NOC personnel, who are expected to keep multicast running properly, cannot



rely on tools created as proof-of-concept prototypes. Since IP multicast has been in active
development, companies have not been willing to put in effort to develop high-quality tools.
This trend is changing. Figure 1 shows there have been some recent commercial interest in
developing management tools.

3 Generalizing the Task of Multicast Monitoring

In the previous section, we discussed a number of early multicast monitoring tools. This discussion
gives us enough insight to attempt developing a set of general characteristics for multicast monitor-
ing systems. We start with a discussion of why multicast monitoring is difficult and different from
unicast monitoring. Then we present a generic architecture and a set of general metrics useful for

categorizing and evaluating multicast monitoring tools/systems.

3.1 The Challenges of Multicast Monitoring

Monitoring multicast traffic is somewhat similar to monitoring unicast traffic, but there are differ-
ences. The key difference derives from the simple fact that multicast traffic can be destined for
multiple receivers. With multicast, this level of abstraction carries additional importance because
of the added complexity associated with delivering a packet to multiple receivers. Instead of mon-
itoring connectivity between pairs of users, multicast deals with potentially very large groups of
users. And instead of monitoring the links along a single path, multicast deals with links organized

into a tree.

Anonymity of group members and use of UDP makes it difficult to monitor multicast groups.
For example, the current multicast model is an open service model that supports sessions in which
anyone can send data to a multicast group and/or join and receive data from the group[10]. In
this model, senders and receivers may not be known to each other. Support for dynamic groups
makes multicast management more difficult. In particular, reachability monitoring—the task of
verifying if multicast data from a session source can be received at a session receiver site-requires
additional mechanisms. This is because in the current IP multicast service model there is no implicit
group coordination or management. Therefore there can be no implicit way of knowing the group

members.

As an example of why the specific characteristics of multicast are more of a challenge than
unicast, we consider the case of monitoring reachability. One mechanism for determining who
group members are and whether there exists reachability between source(s) and receiver(s) is the

ping utility. In unicast, ping allows a source/receiver to test bi-directional reachability to a peer



receiver/source. In the case of multicast, because of the open service model and because ping
requests are made to a group instead of a receiver, the source does not know from whom and from
how many group members to expect responses. This creates a number of problems. First, there is
the problem of implosion which can occur if a very large number of group members choose to send
a response within a small interval. Second, the responses that are sent may only be from a subset
of group members. Receivers who do not have bi-directional connectivity with the source will not
be heard, i.e. receivers who do not hear the ping request (in the case of a broken link), or receivers
who do not have connectivity in the reverse direction. On the other hand, a multicast version of
ping tool that is truly analogous to the unicast ping should return reachability status for all the
receivers in the group. Figures 2 and 3 compares the behavior of multicast ping as it currently

exists and an ideal version of how it should exist.

Ping reply

Ping reply

Existing ping: Source learns existence of reachable receivers

Figure 2: Semantics of the current multicast ping.

3.2 A Generic Architecture for Multicast Monitoring Systems

Based on the evolution of multicast monitoring tools, we have developed a general architecture
for multicast monitoring systems. In this architecture we focus on the basic system components
and their functionality. In general, a multicast monitoring system has a manager component and

one or more agent components. Figure 4 presents an example of a basic system architecture for

10



Ping reply.

P|ng reply_.""'v

‘ Pingreply
Ping reply

Idealized ping: Source learns existence and
reachability status of all group receivers

Figure 3: Semantics of an idealized multicast ping.

multicast monitoring. This figure includes two different monitoring scenarios: one using network
devices for intra-domain monitoring, and one using end-host systems for inter-domain monitoring.

The functionality in these scenarios can be divided into three steps:

1. Manager configures agents for a particular monitoring task: In this step, the man-
ager site sends the necessary configuration parameters to the agents who will perform the
monitoring task. The type of communication between the manager and agents is an impor-
tant consideration. Depending on the scale and complexity of the system, this communication
may be as simple as a UDP-based message exchange (with or without reliability) or it may
be as complex as some type of authenticated and encrypted message exchange. The use of
multicast is sometimes an option but this solution usually creates as many problems, e.g.
reliability and implosion, as it solves.

2. Agents perform monitoring task: After the agents are configured for a specific monitoring
task, they each conduct their measurements. The scope of agent functionality in this step
can vary widely. On one end of the spectrum, agents can simply send state information to
the manager based on thresholds or simple probabilities. More complex monitoring functions
may involve active sourcing of test data, generating statistical data based on a received packet
stream, or aggregating results received from other agents.

3. Manager collects and processes agent reports: Like the other steps, the report/result
collection mechanism in monitoring systems has significant variability. In some cases, a
session manager can poll agents to receive reports. In other cases, agents send their reports

11



Step 3: Manager collects
statistics from agents

Step 2: Agents perform monitoring ‘

and collect statistics

Agent

T e

ol

Step 1: Manager configures
agents for monitoring task

Figure 4: A generic monitoring system architecture.

directly to the manager. As mentioned above, some systems also use agents as intermediary
points—using them to form a reporting hierarchy, thus avoiding report implosion.

Developing this generic architecture is useful in understanding the functional mechanisms of
multicast monitoring systems. We believe that this architecture captures the essential components
of most monitoring tools/systems. However, it should be considered as only a first approximation.
In general, the components and their functionality depend highly on the requirements of the par-
ticular monitoring task. For example, a monitoring task that requires observing multicast traffic
flow on a particular LAN would require only a simple version of this architecture. The architectural
components may even be combined into one relatively straightforward tool, e.g. MultiMON. On
the other hand, a system’s architecture may be fairly complex. A monitoring system may have
to generate test packets from numerous locations in a coordinated attempt to capture an accurate
snapshot of network-wide reachability. In this case, the manager would have to configure a number
of monitoring daemons in the network to collect and report statistical data. Using the results,
the manager might then take action based on the interpretation of these reports, and then correct
observed problems automatically. In the next section, we follow up the generic architecture with a

set of characteristics useful for further describing multicast monitoring systems.

12



3.3 Characteristics of Multicast Monitoring Systems

After studying the architectural properties of multicast monitoring systems, we now turn our at-
tention to the operational characteristics of these systems. In this section, we present a number
of characteristics that should be considered when designing and developing multicast monitoring
systems. Furthermore, these characteristics can be used as metrics to compare the effectiveness
of any of the multicast monitoring systems we have discussed. Later in this paper, we use these
metrics to transition from a discussion of tools that already exist to evaluating tools/systems under
development. The important characteristics that should be considered when designing or evaluating

a multicast monitoring system include:

e Intra- vs Inter-Domain Support: A multicast monitoring system may need to support
both intra-domain and inter-domain monitoring. Each kind of monitoring has potentially
different functional requirements. For example, access to network devices in the intra-domain
is typically unlimited and devices can be fully controlled by the NOC. NOC personnel are
expected not only to monitor the network but also to solve problems that arise. Monitoring
in the inter-domain is based on much more limited access to devices. Typically, instead of
monitoring with the goal of management, the goal is instead to confirm that (a) problems do
exist, and (b) problems are located in a remote domain.

e Scalability: Scalability requires architecture bottlenecks (e.g. complexity, message overhead,
processing, etc.) to increase sub-linearly with (a) the number of monitoring devices, and (b)
the overall size of the network. A multicast monitoring system should adopt mechanisms to
prevent unnecessary traffic on the network and excessive processing load on the participating
nodes. One particularly important scalability requirement is the ability to control report
implosion. Implosion can occur when a centralized collection site is used and the system
supports alarms, i.e. asynchronous reports of error conditions. For example, while monitoring
availability and reception quality of multicast data in a multicast session, failure of a critical
link close to the session source would likely cause many receivers to generate alarms.

e Security: Security is another important issue in monitoring systems. Network devices used
in intra-domain multicast monitoring tests are usually production components and should
only be accessed in a controlled manner by authorized personnel. These devices should
be configured to accept connections and/or service requests from management sites only.
Communication between management sites and these devices should be encrypted and/or
authenticated to prevent malicious attacks. For the inter-domain case, the potential for attack
and mistrust is much greater. In addition to intra-domain concerns, inter-domain security
mechanisms need to be used to control accesses by authorized users in remote domains.

e Extensibility: Extensibility deals with the issue of a system’s ability to support the collection
of new sets of data. SNMP offers a good model. In SNMP, there is a key distinction between
the protocol to collect data and the kinds of data that can be collected. Similarly, multicast
monitoring systems should support collection of as little or as much data as is necessary.

e Device Flexibility: A monitoring system that is able to support data collection at internal
network devices as well as edge devices is likely to offer more useful monitoring data. Again,
SNMP offers a good model to follow. SNMP support is provided in almost all types of devices

13



from routers and switches to printers and peripherals. Edge devices provide a good end-to-
end, user-level view, while internal network devices help show exactly where problems are
occurring.

e Multicast Independence: In a multicast monitoring system, successful communication be-
tween a monitoring coordination site and monitoring agents, even in the presence of faults, is
important. Monitoring systems should not depend solely on the availability of multicast for
communicating control information. If multicast were used as the only mechanism to provide
control information exchanges, monitoring and reporting mechanism breakdown and the ef-
fectiveness of monitoring jeopardized. However, multicast is important as it is a particularly
effective mechanism for achieving scalability. Several of the tools discussed so far (e.g. mitrace
and RTCP-based tools) provide excellent functionality but only when multicast is working

properly.

e Abstraction and Presentation: An important step after monitoring data has been suc-
cessfully collected is how to turn the data into useful information. Some multicast monitoring
systems, like sdr-monitor, MantaRay, and Mantra have shown how to visualize monitoring
data and create easy-to-decipher results.

4 Case Study: The Evolution of Multicast Reachability Monitoring

Reachability monitoring is an excellent example of a challenging multicast monitoring task. Since
the transition of the multicast infrastructure into a hierarchical topology in 1997, monitoring reach-
ability between Internet domains has become an important problem. In this section, we use reacha-
bility monitoring as an example of a typical monitoring task. Our objective is to discuss two current
systems, sdr-monitor and MRM, as instantiations of the generic multicast monitoring architecture

developed in Section 3.2, and then evaluate them using the metrics developed in Section 3.3.

4.1 The Challenges of Multicast Reachability Monitoring

Reachability monitoring is one of the most important yet one of the most difficult multicast mon-
itoring tasks. From a management point-of-view, successfully deploying multicast requires the
ability to build confidence that the network is working in a correct and predictable manner. This
requires mechanisms to monitor and verify successful multicast data transmission within and be-
tween multicast-enabled domains. For a globally-scoped multicast application, a number of poten-
tial receivers may be located in other domains and the availability of data to these receivers may be
affected by reachability. Network operators must have the ability to ensure multicast reachability
to all potential receivers. The dynamic nature of multicast trees and anonymity of group receivers
are important properties of the current multicast model that make it difficult to verify reachability
to all potential session receivers. In the rest of this section, we first identify the requirements for

multicast reachability monitoring and then discuss sdr-monitor, and its offshoot, MRM.

14



Using reachability monitoring for our case study is useful because it lends itself well to the
metrics we have developed for characterizing multicast monitoring systems. Obviously the ability to
provide both intra-domain and inter-domain monitoring is important. Considering the other factors,
the ability to scale to a large number of monitoring sites is important. A reachability monitoring
system should also have some measure of security, should be able to determine reachability based on
a variety of data, and should be adaptable to observation points in and at the edge of the network.
Finally, the data collection mechanism should not rely only on multicast as a response mechanism,
and the results should be displayed in an intuitive manner. With these considerations in mind, we

now describe the sdr-monitor system.

4.2  Sdr-monitor

Sdr-monitor is an application-layer multicast reachability monitoring tool. It is based on moni-
toring multicast session announcements that are transmitted among multicast users. These an-
nouncements are widely used to convey information about active groups to potential receivers. The
session directory tool (sdr) is a distributed tool used by researchers around the world to announce
the availability of multicast audio, video, whiteboard, and/or text sessions[39]. In the sdr-monitor
system, these periodic announcements are also used as heartbeat messages to monitor reachability
between domains. Sdr-monitor participants listen to sdr announcements, and periodically report
which announcements are seen at their site. Sdr-monitor then processes these reports and builds
a real-time web page displaying a reachability matrix for the global multicast infrastructure. Sdr-
monitor also archives the collected information for long-term analysis. The web site has become
a useful monitoring and debugging tool for the multicast community. In addition, using archived
data, an analysis of global reachability patterns was conducted. In the remainder of this section,
we present the sdr-monitor architecture, provide some of the results obtained using sdr-monitor,

and discuss the limitations of the tool.

4.2.1 Sdr-monitor Architecture

Sdr-monitor uses available session announcements from topologically and geographically distributed
users to build a representation of the reachability status in the global multicast infrastructure. The

sdr-monitor architecture, shown in Figure 5, includes the following components:

e Session Announcement Originators: Any user that sends multicast session announce-
ments on the well-known session announcement address (using sdr or any other tool) becomes
a source for sdr-monitor heartbeat messages.

15



e Sdr-monitor Participants: Any sdr user can become an sdr-monitor participant. The
number of sdr-monitor participants is limited. The target number of active participants is
approximately 25 to 30. Participants use a sender script to deliver their sdr cache entries to
the sdr-monitor collection site (see Figure 5). The sender script is a small Tcl script that
runs along with the sdr tool. When the sdr tool is started, it automatically invokes the sender
script. When invoked, it forces sdr to write current set of announcements to the local disk and
then sends these announcements to the sdr-monitor collection site via email. This process is
repeated every hour. Using email is not particularly scalable, but provides a reliable method
for collecting sdr-monitor participant reports.

e Central Collection/Processing Site: At the sdr-monitor collection site, a manager re-
ceivers emails from remote sites and processes them. The manager runs as a daemon process
and periodically checks for incoming email messages. The manager uses these messages to
generate a web page displaying a reachability matrix. The web page is updated continuously
as new information is received. In addition, the manager takes a snapshot of the reachability
matrix every hour and archives it for long-term analysis.

Sdr-monitor Sdr-monitor
Participant Participant
Sdr
s i Tcl Script
Tcl Script I ol

[—

/) Announcement
Originator

[

Sdr

[

Announcement
Originator

SAP/UDP

Sdr Monitor

archive

Figure 5: The sdr-monitor architecture.

www

4.2.2 Sdr-monitor Outputs, Results and Analysis

Sdr-monitor produces two outputs: a real-time web page and an archival data set. As mentioned
above, the sdr-monitor web page displays the current view of global multicast reachability for all
known global sessions for all sdr-monitor participants. By examining this real-time snapshot, the

web page can be used to quickly identify reachability problems in the global multicast infrastructure.

The archival data set consists of the snapshots of the sdr-monitor web page taken once an
hour. It is used for reachability analysis. This analysis is important in understanding long-term

reachability characteristics of the global multicast infrastructure and in understanding the success

16



of deployment. In the remainder of this section, we briefly summarize the key aspects of our analysis
on a data set collected between April 1999 and September 2000. A more detailed analysis on a

subset of this data is available elsewhere[13]. The analysis can be divided into four parts:

e Step 1: Data is processed to remove mis-formed and non-globally scoped sdr announcements.
Session announcements with a Time-To-Live (T'TL) value less than 127 are considered non-
global session announcements and are removed from the data set. In addition, all administra-
tively scoped session announcements are also filtered. Even though these announcements may
have a global TTL (127 or larger), they will likely be blocked at administrative boundaries.
Lastly, all announcements that have not received a soft-state update in the previous hour are
considered “stale” and are also filtered.

e Step 2: We have identified a number of artifacts of using sdr-based session announcements
for monitoring reachability. These problems are mainly due to irregular participation behav-
ior and irregular session-announcing-site behavior. Not all sdr-monitor participants run sdr
continuously. This means that not all participants are continuously reporting their cached
announcements. Since each participant has a potentially different picture of global reachabil-
ity, their joining and leaving can cause dramatic changes in sdr-monitor’s results. Similarly
the number of sites sourcing session announcements is also dynamic. Like participants who
see different sets of sites, session-announcing-sites will be seen by a different set of partici-
pants. Each time a site starts or stops advertising a session, it affects the perceived global
reachability. After identifying these problems, we further process the data to minimize their
impact on the data set.

e Step 3: At this point, the remaining data is used to display the long-term reachability
characteristics of the global multicast infrastructure. The results produced are based on cal-
culating the daily average reachability for each session-announcing-site. This is computed by
averaging the visibility of all sdr-monitor participants for each session-announcing-site. Visi-
bility of a site is computed by dividing the number of participants receiving an announcement
by the total number of active participants. For graphing purposes, we then divide session-
announcing-sites into four groups based on their daily average visibility. The four groups are:
0%-25%, 26%-50%, 51%-75%, and 76%-100%. Figure 6 shows the breakdown of results over
the 17 month collection period.

e Step 4: In the last part of our analysis, we attempted to identify the qualitative reasons
for reachability problems. The main reasons that we believe cause reachability problems are
(1) local connectivity problems at sdr-monitor participant sites, (2) inter-domain connectiv-
ity /peering problems, and (3) trans-oceanic connectivity problems[13].

4.2.3 Evaluation of Sdr-monitor as a Monitoring Tool

As a monitoring tool, sdr-monitor has a number of areas that could be improved. In large part,
many of these problems relate to the use of SAP as a heartbeat mechanism. Furthermore, it is

exactly this set of problems that MRM was targeted to solve. These problems include:

17



Visibility Range ‘ EHUpto25% M26% -50% [O51% -75% [076% - 100%

o
03]
!

o
o
|

Grouping of Sites Based on
Reachability - Normalized

o+ FUCHIAMIN 1
N H

Apr-99 Jun-99 Aug-99 Oct-99 Dec-99 Feb-00 Apr-00 Jun-00 Aug-00

Figure 6: Average visibility for sdr-monitor session-announcing-sites.

e Lack of flexible monitoring: Sdr-monitor can only report reachability between sites that
are advertising sessions and sdr-monitor participants. Furthermore, this reachability is in
only one direction.

e Lack of heartbeat message control: Sdr-monitor cannot control the frequency of heart-
beat messages sent by sources. Packets are sent periodically (approximately once every 5
minutes), and this may not be sufficient to establish the routing state necessary to measure
reachability. Furthermore, periodic, single packet transmissions are not sufficient to give us
a measure of the quality of the connections between sites.

e Lack of consistent monitoring: Because both sourcing sites and participants can come
and go at will, the results can change dramatically even though overall reachability does not
change significantly (see Figure 6).

Taking a broader look at sdr-monitor, its architecture has similarities to the generic architecture
in Section 3.2. In the sdr-monitor architecture, the manager-to-agent interaction is not automated.
The maintainers of sdr-monitor establish contact with potential participants and then send the
sender script to them via email. The monitoring step is active only when participants are running
sdr. The report collection step occurs using email back to the manager. Finally, using the criteria

established in Section 3.3, we evaluate sdr-monitor as follows:

18



e Intra- vs. Inter-Domain Support: Sdr-monitor can provide support for monitoring on
any scale as long as there are users willing to participate.

e Scalability: Sdr-monitor does not provide an explicit scalability mechanism. In the case
of a large number of participants, the message processing load at the manager site may be
significant. However, since reports are delivered at random periods, this helps avoid implosion.

e Security: Sdr-monitor does not have any explicit security mechanisms. It is therefore sus-
ceptible to malicious users submitting false reports or overwhelming the server by sending
large numbers of bogus reports.

e Extensibility: Sdr-monitor depends on an existing application layer protocol mechanism
and so has no real extensibility.

e Device Flexibility: Sdr-monitor is limited to end-host systems capable of running sdr.

e Multicast Independence: Sdr-monitor does not rely on multicast for communication be-
tween the manager and agents.

e Abstraction and Presentation: The sdr-monitor web page has a very useful display.
The color coded matrix shows what a site should see and identifies the region for which
reachability does and does not exist. We have observed that “clustering”, both of reachable
and unreachable sites, can be used to identify faults and even isolate their location.

4.3 The Multicast Reachability Monitor (MRM) Protocol

MRM is an under-development protocol to send and receive test multicast data streams and to
collect information about the quality of the stream. MRM is designed to support basic reachability
monitoring plus provide “hooks” to other management systems and tools. The development of
MRM has been influenced by sdr-monitor and the need to create a better inter-domain reachability
monitoring system. MRM is also being designed to be used as an intra-domain monitoring and
management tool. As a result, MRM is truly a management system and a natural evolution of

several monitoring tools.

The functionality provided by MRM is the ability to have a centralized management station
configure test multicast sessions. Configurations include who the source(s) should be, what the
transmission rate should be, who the receiver(s) should be, and criteria for reporting results. A
network manager is responsible for coordinating the test sessions, processing results, and presenting
them to a user. Generated traffic can be used to test basic reachability or test end-to-end capability.
Tests can be conducted in advance of an event to confirm functionality or during an event to monitor
quality. In addition to individual tests, a suite of tests can be conducted in which a frequently
changing set of network devices is used. In this way, statistical testing can be performed for large

networks.

19



The remainder of this section is dedicated to describing the MRM protocol in detail. This
description includes an overview of MRM and its components, a list of MRM’s message types, and

an evaluation of MRM using the metrics developed in Section 3.3.

4.3.1 MRM Protocol Description

The primary goal of MRM is to provide network fault detection and isolation mechanisms for ad-
ministrating a multicast-enabled infrastructure. An MRM-based fault monitoring system consists
of two components: (1) MRM agents that source or sink test traffic, and (2) an MRM manager
that configures tests, collects and presents fault information. The MRM protocol specifies the
communication primitives used between MRM agents and the MRM manager. Lastly, it provides
mechanisms to provide scalability, flexibility and security, etc. From this perspective, the MRM
protocol can be considered a combination of a scalable version of SNMP’s communication func-
tionality and the flexible data structure of MIBs. A more detailed description of MRM agents and

managers is as follows:

e MRM Agents: MRM agent code can potentially be run in any device in the network. The
goal is to have routers implement limited agent functionality, and to have more capable end-
hosts implement a richer feature set. Agents act as either Test Senders (TSs) or Test Receivers
(TRs). A TS sources data packets in response to a request from an MRM manager. A test
scenario may not require any TSs if the manager configures TRs to monitor traffic for an
pre-existing, active multicast session. An MRM agent configured as a TR will receive traffic,
collect statistics, and send reports. The specific actions taken depend on the capabilities of
the agent and what the manager configures it to do.

e MRM Manager: An MRM manager initiates configuration requests to the MRM agents
and assigns the roles of T'Ss and TRs. The MRM manager informs the T'Ss and TRs of the
types of monitoring or diagnostic tests to run. The MRM manager also specifies the type
of reports the TRs should send. Agents can be asked to send reports at specific intervals,
only if certain thresholds are violated, or probabilistically. The MRM manager plays a key
role in determining the usefulness of the tests as well as their impact on the network and
the network devices. The MRM protocol specifies the basic interaction mechanisms between
MRM managers and MRM agents. It also provides support for MRM managers to control
and change the behavior of MRM agents during a test session. Functionality offered by an
MRM manager can be as simple as a command line interface with a simple display of all
responses, or it can be a sophisticated tool. A manager could be incorporated as part of
an operational network monitoring tool, automatically deciding when to run test sessions;
changing configuration of MRM agents during a test session; or deciding when and which
types of reporting mechanisms to use.

An MRM test scenario has four basic steps. First, the MRM manager sets up the test. Second,
the TSs send traffic to the TRs. Third, the TRs generate reports and send them to the MRM

manager. And fourth, the MRM manager processes the reports. These four steps are very similar

20



to the three steps shown in Figure 4. The second step in Figure 4—the data monitoring step—is

broken into two steps for MRM. These four steps are shown in Figure 7 and described in more

detail below.

Step 3: TR(s) Monitor
Group Transmission

Step 2: TS
Transmits

Step 1: Mgr Configures  Step4: Mgr Collects and

TS(s) and TR(S) Displays TR Reports
Manager =—=Agent
O Router @ End-host ~ ----- Coman?unication ]

Figure 7: The architecture of an MRM system including message flow

1. An MRM manager instantiates a test scenario based on parameters from either a person or
from a tool as part of a larger system. The MRM manager initiates configuration requests
to the MRM agents and assigns the roles of TSs and TRs. The MRM manager informs the
TSs of the quantity and duration of traffic to generate and informs the TRs of the types of
reports to generate.

2. TS(s) generate test traffic. In the case where an MRM scenario is monitoring real group
traffic there may be no TSs. TRs will monitor whatever traffic they are configured to receive.
One dependency between TSs and TRs is that the TRs must understand the transport and
application layer packet headers used by TSs or the real traffic source. In the initial protocol
design, the RTP packet header is used. This includes both traffic generation as well as TR
status report messages. This allows re-use of existing RTP-based reception mechanisms and
provides interoperability with existing RTP-based tools.

3. TRs generate fault reports and/or status reports. Fault reports are similar to SNMP alarms
and are generated when a condition being monitored by the TR violates some threshold. For
example, if loss exceeds a certain percentage, then the TR would send a report to the MRM
manager. TRs may also send status reports but these are generated in response to explicit

MRM manager requests. In this way, the MRM manager can periodically test the liveness of
TRs.

21



4. The MRM manager receives and processes data from MRM agents. This function is not part
of the protocol description but it is of critical importance nonetheless. We expect systems
to be developed to take MRM reports and display the results. Or, we expect systems to be
developed which format the MRM reports so that they can be passed to existing visualization
tools[15, 17].

4.3.2 MRM Message Types

MRM functionality is based on the ability of an MRM manager to configure and interact with TSs

and TRs. The four basic protocol message types include the following:

e Test_Sender Requests (TSRs): TSRs cause an MRM agent to begin sourcing (or stop
sending if already sourcing) packets according to the parameters in the TSR packet, e.g.
number of packets to send, inter-packet transmission delay, address of test session, type of
packets to send, etc. TSR messages are sent using unicast UDP with acknowledgments.
Additional soft-state updates may be carried in beacon messages (see below).

e Test_Receiver Requests (TRRs): A TRR message is delivered using the same method
as TSRs (acknowledged UDP). A TRR can either be a request to the agent to become a TR
or it can be a request to an existing TR to return a status report. In either case, a TRR
packet includes the test session address, length of the test, kind of report to generate (RTCP
or other), and when to generate a report (upon threshold violation, only upon request, or
probabilistically).

e Test_Receiver_Status_Reports (TRSRs): These reports are sent by the TRs to the MRM
manager. The initial design is for status reports to use the RTP “receiver report (RR)” packet
format[6]. In addition, MRM can be extended to support more detailed reports. Several
extended report headers are currently under development[40)].

e MRM Beacon Messages: One mechanism that MRM has that provides partial scalability
is beacon messages. Beacon messages are sent periodically (recommended once every minute)
by the MRM manager to a well-known multicast address (mrm.mcast.net). All TSs and TRs
join this multicast group and listen. This beacon message contains a sequence number, the
authentication data, the elapsed time since the last beacon message, and any active TSRs and
TRRs for a particular scenario. The sequence number and elapsed time carried in a beacon
message can be used to verify MRM Manager liveness. This beacon mechanism has three
purposes:

1. Allows TSs and TRs to learn the liveness of the MRM manager.

2. Allows the MRM manager to (unreliably) make large-scale changes to a test scenario.
For example, an MRM manager can change the transmission rate for all sources, end
a large-scale test prematurely, etc. This function is unreliable because MRM does not
depend on the availability of multicast and therefore there is no way to guarantee that
every target receiver can actually get the message.

3. Provides a soft-state re-assert mechanism in small-scale testing environments. A re-
assert mechanism is useful in the case when network devices crash and then re-start.
Beacon messages provide a way of letting these devices know that they are supposed to
be participating in a test.

22



4.3.3 Evaluation of MRM as a Monitoring Tool

In Section 3.3 we listed a number of characteristics that can be used as metrics for evaluating

multicast monitoring systems. In this section, we evaluate MRM based on these metrics.

e Intra- vs. Inter-Domain Support: MRM can be used both in the intra-domain and inter-
domain. In the intra-domain, an MRM manager will likely have full access to all possible
kinds of information. However, in the inter-domain there needs to be provisions to limit the
kinds of tests that can be initiated from outside the domain. While this function is not a
part of the MRM protocol specification, there are conventions in the protocol that allow an
agent to reject a TSR or a TRR. By acknowledging the TSR or TRR but with a test duration
of zero, the agent is effectively refusing to participate in the test. The conditions in which
an agent can reject a test are subject to the guidelines imposed by each domain. Beyond
the ability to control which tests are run, we expect inter-domain use of MRM to mainly
be among end-host systems. Since end-host agents have access to less internal, proprietary
network information, and a service provider cannot always control what a user does, it seems
reasonable that end-host-based testing environments will be relatively easy to set up.

e Scalability: Currently, MRM has limited provisions for scalability. The problem is the
desire to utilize the scalability of multicast but to avoid the dependence on multicast for
robustness. The primary problem is that MRM has an asynchronous response mechanism.
Network engineers have the ability to configure test scenarios that can potentially generate
overwhelming amounts of feedback traffic. This implosion problem exists and is addressed
in a number of other scenarios, for example, in reliable multicast protocols[41]. Current
research is underway to use some of these techniques in protocols like MRM[20]. Efforts are
also underway to add multicast as a communication mechanism in more traditional protocols
like SNMP[42]. The simple mechanism implemented by MRM is to utilize delayed feedback
reporting. The MRM manager assigns a pre-determined report-delay to each TR. Each TR,
upon detecting a fault, will randomly delay the sending of its report based on the report-delay
period.

e Security: MRM provides necessary security mechanisms to protect MRM-capable network
devices and end hosts from unauthorized use. Access rights to MRM agents are controlled
using access lists, and MRM manager-to-agent communication uses the IP Security Au-
thentication Header[43] with HMAC-MD5 transformation as the standard authentication
algorithm[44]. As mentioned above, MRM agents also have the ability to reject TSRs or
TRRs.

e Extensibility: MRM provides extensibility by offering multiple report types. Not only
can MRM generate a wide variety of reports, but the kinds of reports generated can vary
depending on the capabilities of the devices used in the test scenarios. Network devices are
expected to perform only low-impact processing. On the other hand, end hosts can collect and
store more detailed information about the arrival of each test session packet[40]. Currently,
MRM’s default report is the same format as RTCP Reception Reports. This allows other
RTCP-capable tools to be able to receive and process MRM agent reports.

e Device Flexibility: MRM is designed to work in a variety of network devices and end-
host systems, and has provisions to provide monitoring functionality based on the specific
capabilities of the device.

23



e Multicast Independence: MRM uses beacon messages as an optional mechanism to provide
scalability, but the basic protocol does not rely on it. Therefore, MRM operation is truly
independent of multicast.

e Abstraction and Presentation: The protocol specification for MRM does not include a
component for data processing and presentation. This functionality, which is expected to be
included in the manager, is left to the discretion of the system implementor.

MRM provides much of the functionality that a good monitoring system should provide. How-
ever, the challenge is how to improve its scalability and then to ensure that there are commercial
tools available that implement the protocol well and are useful in supporting deployment efforts.
Another area that is still under development is MRM’s interaction with SNMP. MRM’s utility
would be further improved if it had its own MIB and was able to provide the results of tests to

SNMP-based tools.

5 Surveying Other Platforms for Multicast Monitoring

In the previous two sections, we examined sdr-monitor and MRM as two alternatives for reachabil-
ity monitoring. In this section, we briefly discuss three more systems that are capable of monitoring
multicast traffic and the health of the infrastructure: SNMP_NG, NIMI and GDT. The goal is to un-
derstand how these systems work, to compare and contrast their characteristics, and to understand

what novel monitoring techniques each possesses.

SNMP _NG. SNMP is the common piece of many network management systems. Most NOC
personnel are comfortable with SNMP and most are familiar with SNMP-based systems. How-
ever, SNMP is not without its deficiencies. Until recently, SNMP has been primarily used for
monitoring and performance management within domains. If we were to take the current protocol
version, SNMPv2, and evaluate it using our set of metrics, it would do poorly on inter-domain
support, scalability, and security. To a large extent, these problems are being addressed by two
threads of effort. First, there is effort in the Internet Engineering Task Force (IETF) to develop
an SNMPv3 protocol with better support for security and device configuration[27]. Second, there
are research efforts looking to improve SNMP’s distributed management capabilities—primarily
by adding scalability[42]. These efforts together are what we are calling SNMP-next-generation,
(SNMP_NG). To this end, SNMP_NG has the following characteristics.

e Intra- vs. Inter-Domain Support: With new security features, SNMP should be much
better at providing limited access to inter-domain peers. SNMP also continues to be an
important intra-domain system.

24



e Scalability: With recent attention at incorporating multicast as a communication primitive,
SNMP _NG should be much better at providing scalability.

e Security: A major focus of SNMPv3 is to improve security.

e Extensibility: SNMP continues to have significant extensibility through the flexibility of
MIBs. Also, since SNMPv3 has the capability to configure devices, it will have the ability to
create test scenarios and configure SNMP agents to source traffic.

e Device Flexibility: SNMP continues to offer significant device flexibility. SNMP capa-
bility is available in many devices ranging from switches and routers to printers and other
peripherals.

e Multicast Independence: With efforts to add scalability through multicast, scalable ver-
sions of SNMP will likely be at least somewhat dependent on multicast. However, lessons
learned in protocols like MRM should help avoid significant dependence.

e Abstraction and Presentation: There are already a number of SNMP-based management
platforms that provide well-understood interfaces to NOC personnel.

NIMI. The National Internet Measurement Infrastructure (NIMI) provides an architecture in
which a collection of measurement probes cooperate to measure various properties of Internet
paths and clouds[36]. It has been developed based on the need for a global Internet measurement
infrastructure. “NIMI platforms” installed at various end-hosts around the world are used for a
variety of end-to-end network measurement projects. These platforms belong to network operators
deploying them. Researchers that want to use these platforms for their measurements need proper
access permissions. Access to NIMI platforms are controlled by authentication mechanisms. Access
permissions are regulated by platform owners and these permissions are associated with a set of
functions that can be performed on these platforms. Depending on the access permissions, one can
upload new modules for performing specific measurements and use these platforms for measuring

various network activities. Using the set of metrics from Section 3.3, NIMI performs as follows:

e Intra- vs. Inter-Domain Support: NIMI works well in both the intra- and inter-domains.
The platform on which NIMI runs can be tightly controlled by the owner and access to
sensitive data protected.

e Scalability: NIMI does not have specific mechanisms to provide real-time measurement
scalability. In fact, NIMI seems to be more targeted at non-real-time measurements, i.e. tests
that do not require results to be reported as fast as possible. In this sense, NIMI is not a
monitoring system but rather a measurement system.

e Security: NIMI has a strong authentication mechanism to protect NIMI platforms from
unauthorized use. In addition, limits on the workload required to carry out tests can be
controlled via the NIMI platform interface.

25



e Extensibility: One of NIMI’s biggest strengths is its extensibility. The way NIMI is designed,
it is easy to deploy new measurement modules. Therefore, it is conceptually straightforward
to develop a new module, deploy it, and run new measurements.

e Device Flexibility: NIMI measurement is currently limited to end-host systems.

e Multicast Independence: NIMI does not rely on multicast for updating platforms/modules
or for collecting measurement data.

e Abstraction and Presentation: NIMI does not have provisions for processing collected
data; this function is outside the scope of the NIMI architecture.

GDT. The Globally Distributed Troubleshooting (GDT) system provides a mechanism to detect
and report network problems across administrative domains[24, 25]. In GDT, each domain has a
number of expert modules. Each module has associated areas of expertise. Expert modules in peer
domains can contact each other and exchange problem reports with the goal of alerting remote
domains of problems that may or may not be located in the remote network. Any entity within one
domain may report a problem to an expert module. Expert modules then apply known domain-
specific tests to confirm or deny the existence of the problem. GDT does not specify how to test or
repair problems, it depends on locally available management systems for these operations. After
confirming a problem, an expert module generates new hypotheses about potential causes of the
problem and sends problem reports to other expert modules. If a problem is believed to exist in
another domain, a hypothesis will be sent to an expert module in that domain. In this way, experts
in peer administrative domains work together to locate actual problem points. GDT is designed
as an application-layer, inter-domain debugging coordination tool. GDT’s characteristics are as

follows:

e Intra- vs. Inter-Domain Support: GDT is primarily designed to be an inter-domain tool.
It is expected to facilitate communication and cooperation across administrative boundaries—
a boundary across which management information typically does not flow.

e Scalability: GDT will likely not have to deal with many issues related to scalability. The
situation in which a scalability bottleneck is created is when there are numerous error con-
ditions that require expert modules to conduct and report on many debugging activities. If
the infrastructure is at the point where there are numerous problems, worrying about the
scalability of GDT is the least of a NOC’s problems.

e Security: GDT does not specifically deal with the issue of security, but because of its focus
on debugging, there is only minimal need for protection. The key weakness is the ability of
an expert module to be attacked by receiving bogus requests for debugging information, or
overwhelming it with debugging reports.

e Extensibility: GDT’s need for extensibility revolves around the need to be able to handle
new error conditions and to be able to use new debugging tools. To this extent, GDT is
extensible but the complexity of effectively using new tools is likely to be considerable.

26



e Device Flexibility: As described, GDT expert modules can potentially run in any network
device. As with MRM, capability of the expert module is dependent on the capability of the
device on which it runs.

e Multicast Independence: GDT’s communication mechanism does not use multicast and
so management efforts are not hindered when multicast fails.

e Abstraction and Presentation: In GDT, the main data that has to be presented is the
results of attempts to isolate problems and report time-to-resolution information.

6 Conclusions

In this paper we have attempted to understand the body of work related to multicast monitoring
tools and systems. Beyond categorizing and describing many of the important tools that have
evolved, we have focused on generalizing the paradigm used by many of these tools. Because a lack
of adequate multicast monitoring tools has been cited as a reason for a lack of multicast deployment,
we believe it is important to understand what the existing set of tools does and does not do. To this
end, we have presented a generic architecture which represents the basic organization of many of
these tools. We have also identified a set of metrics that can be used to further characterize existing
monitoring efforts. Applying this set of metrics to a tool can help formalize the tool’s advantages
and disadvantages. As a case study, we use our work in reachability monitoring to show the kinds
of results that are being produced; where current systems are weak; and how incremental work has
tried to solve these problems. Our general conclusion is that adding support to the network for
any kinds of service beyond best-effort delivery of IP packets is fundamentally hard. And while
there are numerous debugging, management, and modeling tools available, each is only marginally

effective in making multicast easier to deploy.

References

[1] S. McCreary and K. Claffy, “Trends in wide area IP traffic patterns, a view from Ames Internet
exchange.” http://www.caida.org/outreach/papers/AIX0005.

[2] K. Almeroth, “The evolution of multicast: From the MBone to inter-domain multicast to
Internet2 deployment,” IEEE Network, vol. 14, pp. 10-20, January/February 2000.

[3] B. Fenner and et al., mrouted 3.9-beta, mrinfo, and other tools, March 1998. Available from
ftp:/ /ftp.parc.xerox.com/pub/net-research/ipmulti/.

[4] W. Fenner and S. Casner, “A ‘traceroute’ facility for IP multicast.” Internet Engineering Task
Force (IETF), draft-ietf-idmr-traceroute-ipm-*.txt, August 1998.

[5] A. Swan, D. Bacher, and L. Rowe, rtpmon 1.0a7. University of California at Berkeley, January
1997. Available from ftp://mm-ftp.cs.berkeley.edu/pub/rtpmon/.

27



[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

H. Schulzrinne, S. Casner, R. Frederick, and J. V., “RTP: A transport protocol for real-time
applications.” Internet Engineering Task Force (IETF), RFC 1889, January 1996.

D. Makofske and K. Almeroth, “Real-time multicast tree visualization and monitoring,”
Software—Practice & Fxperience, vol. 30, pp. 1047-1065, July 2000.

D. Makofske and K. Almeroth, “MHealth: A real-time graphical multicast monitoring tool for
the MBone,” in Workshop on Network and Operating System Support for Digital Audio and
Video (NOSSDAV), (Basking Ridge, New Jersey, USA), June 1999.

K. Auerbach, DWTNDA: Dr. Watson, The Network Detective’s Assistant, November 1997.
Available from http://www.cavebear.com/dwtnda/spd.html.

S. Deering and D. Cheriton, “Multicast routing in datagram internetworks and extended
LANs,” ACM Transactions on Computer Systems, pp. 85—111, May 1990.

J. Robinson and J. Stewart, MultiMON 2.0 — Multicast Network Monitor, August 1998. Avail-
able from http://www.merci.crc.ca/mbone/MultiMON/.

D. Massey and B. Fenner, “Fault detection in routing protocols,” in International Conference
on Network Protocols (ICNP), (Toronto, CANADA), November 1999.

K. Sarac and K. Almeroth, “Monitoring reachability in the global multicast infrastructure,”
in International Conference on Network Protocols (ICNP), (Osaka, JAPAN), November 2000.

K. Sarac and K. Almeroth, “Supporting the need for inter-domain multicast reachability,” in
Workshop on Network and Operating System Support for Digital Audio and Video (NOSS-
DAV), (Chapel Hill, North Carolina, USA), June 2000.

P. Rajvaidya and K. Almeroth, “A scalable architecture for monitoring and visualizing multi-
cast statistics,” in IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management (DSOM), (Austin, Texas, USA), June 2000.

T. Munzner, E. Hoffman, K. Claffy, and B. Fenner, “Visualizing the global topology of the
MBone.,” in IEEE Symposium on Information Visualization, (San Francisco, California, USA),
October 1996.

B. Huffaker, E. Nemeth, and K. Claffy, “Otter: A general-purpose network visualization tool.,”
in INET, (San Jose, California, USA), June 1999.

K. Almeroth, L. Wei, and D. Farinacci, “Multicast reachability monitor (MRM).” Internet
Engineering Task Force (IETF), draft-ietf-mboned-mrm-*.txt, October 1999.

K. Almeroth and L. Wei, “Justification for and use of the multicast routing monitor (MRM)
protocol.” Internet Engineering Task Force (IETF), draft-ietf-mboned-mrm-use-*.txt, March
1999.

J. Walz and B. Levine, “A hierarchical multicast monitoring scheme,” in International Work-
shop on Networked Group Communication (NGC), (Palo Alto, California, USA), November
2000.

J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, “Protocol operations for version 2 of the
simple network management protocol (SNMPv2).” Internet Engineering Task Force (IETF),
RFC 1905, January 1996.

28



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, “Structure of management information
for version 2 of the simple network management protocol (SNMPv2).” Internet Engineering
Task Force (IETF), RFC 1902, January 1996.

A. Rubens, C. Ravishankar, D. Thaler, A. Adams, B. Norton, and J. DiGiuseppe, “Merit
SNMP-based MBone management project.” http://www.merit.edu/~mbone/.

D. Thaler and C. Ravishankar, “An architecture for inter-domain troubleshooting,” in Pro-
ceedings of Sizth International Conference on Computer Communications and Networks, (Las
Vegas, Nevada, USA), September 1997.

D. Thaler, “Globally distributed troubleshooting (GDT): Protocol specification.” Internet En-
gineering Task Force (IETF), draft-thaler-gdt-*.txt, January 1997.

R. Malpani and E. Perry, mmon: A multicast management tool using HP Open View, December
1999. Available from http://www.hpl.hp.com/mmon/.

J. Case, R. Mundy, D. Partain, and B. Stewart, “Introduction to version 3 of the internet-
standard network management framework.” Internet Engineering Task Force (IETF), RFC
2570, April 1999.

D. Agarwal and S. Floyd, “Tool for debugging internet multicast routing,” in Computer Science
Conference, (Phoenix, Arizona, USA), pp. 22-29, March 1994.

A. Ghosh and P. Brooks, MWATCH 3.6.2. University College London, June 1994.

B. Mah, “Measurements and observations of IP multicast traffic,” Tech. Rep. UCB/CSD-93-
735, University of California at Berkeley, March 1993.

K. Almeroth and M. Ammar, “Multicast group behavior in the Internet’s multicast backbone
(MBone),” IEEE Communications, vol. 35, pp. 224-229, June 1997.

K. Almeroth, “A long-term analysis of growth and usage patterns in the Multicast Backbone
(MBone),” in IEEE Infocom, (Tel Aviv, ISRAEL), March 2000.

M. Yajnik, J. Kurose, and D. Towsley, “Packet loss correlation in the MBone multicast net-
work,” in IEEE Global Internet Conference, (London, ENGLAND), November 1996.

M. Handley, “An examination of MBone performance,” Tech. Rep. ISI/RR-97-450, Information
Sciences Institute (IST), University of Southern California (USC), January 1997.

A. Adams, R. Bu, R. Caceres, N. Duffield, T. Friedman, J. Horowitz, F. Lo Presti, S. Moon,
V. Paxson, and D. Towsley, “The use of end-to-end multicast measurements for characterizing
internal network behavior,” IEEE Communications, May 2000.

V. Paxson, J. Mahdavi, A. Adams, and M. Mathis, “An architecture for large-scale internet
measurement,” IEEE Communications, August 1998.

R. Chalmers and K. Almeroth, “Modeling the branching characteristics and efficiency gains of
global multicast trees,” in IEEE Infocom, (Anchorage, Alaska, USA), April 2001.

M. Handley, “SAP: Session announcement protocol.” Internet Engineering Task Force (IETF),
draft-ietf-mmusic-sap-*.txt, March 2000.

29



[39] M. Handley, SDR: Session Directory Tool. University College London, November 1995. Avail-
able from ftp://cs.ucl.ac.uk /mice/sdr/.

[40] T. Friedman, R. Caceres, K. Almeroth, and K. Sarac, “RTCP reporting extensions.” Internet
Engineering Task Force (IETF), draft-ietf-avt-rctp-report-extns-*.txt, March 2000.

[41] K. Obraczka, “Multicast transport mechanisms: A survey and taxonomy,” IEEE Communi-
cations, vol. 36, January 1998.

[42] E. Al-Shaer and Y. Tang, “Toward integrating IP multicasting in internet network management
protocols,” Computer Communications—Integrating Multicast into the Internet, 2000.

[43] K. Stephen and R. Atkinson, “IP authentication header.” Internet Engineering Task Force
(IETF), draft-ietf-ipsec-auth-header-*.txt, July 1998.

[44] R. Rivest, “The MD5 message-digest algorithm.” Internet Engineering Task Force (IETF),
RFC 1321, April 1992.

30



