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Abstract

Businesses offering video-on-demand (VoD) and downloadable-CD sales are growing in the
Internet. Batching of requests coupled with a one-to-many delivery mechansim such as multicast
can increase scalability and efficiency. There is very little insight into pricing such services in a
manner that utilizes network and system resources efficiently while also maximizing the expecta-
tion of revenue. In this paper, we investigate simple, yet effective mechanisms to price content in
a batching context. We observe that if customer behavior is well understood and temporally in-
variant, a fixed pricing scheme can maximize expectation of revenue if there are infinite resources.
However, with constrained resources and potentially unknown customer behavior, only a dynamic
pricing algorithm can maximize expectation of revenue. We formulate the problem of pricing as a
constrained optimization problem and show that maximizing the expectation of revenue can be in-
tractable even when the customer behavior is well known. Since customer behavior is unlikely to be
well known in an Internet setting, we develop a model to understand customer behavior online and
a pricing algorithm based on this model. Using simulations, we characterize the performance of
this algorithm and other simple and deployable pricing schemes under different customer behavior
and system load profiles. Based on our work, we propose a pricing scheme that combines the best
features of the different pricing schemes and analyze its performance.
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1 Introduction

The Internet is seeing an explosive growth in commercial activities. Downloadable software
and multimedia are especially popular. One can think of scenarios where customers can download
music, movies, and even books after online transactions. Video-on-Demand (VoD) is one such
service in the Internet. However, inspite of the immense research interest in VoD over the last
decade [1, 2, 3, 4, 5], commercial efforts have failed to materialize. One of the possible reasons
why they have failed until now is the lack of a good business model. Given the renewed interest in

such services, it is very important to develop a sound business model.

When the content is popular, and user interactivity is not required, using multicast [6, 7] or
broadcast [8] mechanisms to serve many users simultaneously improves scalability of the system.
This is accomplished by a technique known as batching. Requests for the same content are aggre-
gated over a period of time and then served in one single transmission using a one-to-many delivery
mechanism such as multicast or broadcast. This benefits the content provider greatly because fewer
resources are utilized at the cost of a small waiting time for the customers. In this paper, using anal-
ysis and heuristics, we develop a business model for systems implementing batching for content
distribution. In our earlier work [9, 10, 11], we have developed pricing models for systems that do

not implement batching.

Pricing must take into account customer valuations as well as resource constraints. Let us
consider an illustrative example. Consider a content provider selling downloadable CDs. The num-
ber of CDs that can be downloaded from the web site within a given time frame is limited by the
bandwidth and server resources available. Furthermore, the resources available cannot be arbitrarily
increased. This is because, the demand (or request arrival process) in an Internet setting may not be
easily predictable. For instance, a very exclusive and popular music album available at the web-site
may increase demand for a short period of time, say a fortnight. Once the initial popularity wanes,
demand (and hence request arrival rate) will drop. Long-term investements in high capacity links
and server resources to meet the demand may therefore not be a practical solution. At the same time,
short-term acquisition of server resources and bandwidth may not be possible. In such a situation,
two questions arise: (1) can the content provider increase revenues during the peak times by serv-
ing the same number of customers for a higher price?, and (2) can the content provider reduce the
number of customers denied service! during peak times by charging a higher rate for the service?

These are interesting questions that need to be answered for succesful deployment and acceptance

'We make a distinction between customers who are denied service because they do not accept the price and those who
accept the price but are denied service due to resource constraints.



of content distribution networks by the commercial world.

Our objective in this paper is to answer the above questions by constructing a formal model
for pricing content in a system with dynamic load patterns. To develop a thorough understanding of
the fundamental problem area, we limit our considerations in this paper to a rudimentary, yet prac-
tically relevant, content delivery architecture. Our work presents essential findings, which provide
the foundation for future extensions towards more complex scenarios. Even so, there are various
choices for pricing the content: subscription-based pricing, quoted-price, sealed-bid auctions, etc.
In this work, we restrict ourselves to a quoted-price model, wherein the content provider quotes a
price to the customer. The customer may accept or reject the service based on his/her valuation of
the service. We observe that if customer behavior is time invariant and well known, then a strategy
of charging a fixed price can maximize the expectation of revenue if there are infinite distribution
resources. When resources are constrained, fixed pricing may not maximize expectation of rev-
enue. Nevertheless, there is usually a strong case for a fixed price because it is simple to implement.
In this work, our goal is to explore the benefits of a dynamic pricing structure. We believe that
subscription-based pricing coupled with a dynamic pricing scheme can address most customers’
concerns. Risk-averse customers can opt for the subscription pricing while other customers can opt
for the quoted-price model. Since requests are batched, subscribers’ requests will not compete for

resources with the quoted-price-model customers.

We formulate the problem of pricing in a batching system as a constrained optimization
problem. We show that for some kinds of customer behavior, even when that behavior is well
known, the problem of maximizing the expectation of revenue is intractable. In reality, customer
behavior cannot be accurately known?. We propose a framework to understand customer behavior
parameters in such a situation. Using this framework, we develop a pricing algorithm. We also study
other simple, yet effective pricing schemes? that can be adopted in a content delivery system. Our
objective in this paper is not to proclaim that one pricing mechanism is superior to another. Our aims
are: (1) to understand the choices available to a content provider in a dynamic environment, and (2)
to characterize these pricing options under different customer behavior and system load profiles. To
this end, we perform simulations under different scenarios and evaluate the pricing schemes using
two metrics: revenue and customer satisfaction (as measured in the number of requests denied due to
lack of resources). Finally, we propose a hybrid scheme that combines the best features of different

*Market surveys usually provide some information. However, they are costly and have potentially limited accuracy in
a dynamic environment like the Internet.

3 All the pricing schemes discussed in the paper conform to the quoted-price model, where the content provider quotes
a price to the customer.



pricing schemes to improve revenue and system performance.

The problem of pricing would appear to be very similar to the pricing problem at say DVD
rentals or movie theaters. However, there is one significant difference that may prevent us from
applying pricing strategies from such systems to a content delivery service. The crucial difference is
that, all products in a content delivery system compete for common server and bandwidth resources.
To illustrate this point, consider the case where a content provider has only enough resources to
accept one request. Suppose that there are two requests—one for content A, where the customer
is willing to pay $5 and the other for content B, where the customer is willing to pay $10. By
rejecting the request for A (by quoting a price greater than $5), and accepting the request for B
(by quoting exactly $10), the content provider generates more revenue. Thus, the content provider
must intentionally over-price content A in order to increase the returns per unit resource consumed.
On the other hand, in a conventional market, it would be counter-productive to intentionally over-
price any of the content. This problem is therefore specific to a system with the characteristics just
described.

The rest of the paper is organized as follows. Section 2 briefly reviews related related work.
Section 3 presents our system architecture and batching model. Section 4 presents our theoretical
results about maximizing the expectation of revenue in a batching system. Section 5 develops a
customer behavior model and a framework for estimating the parameters governing the customer
behavior. Section 6 presents a class of simple and effective pricing schemes while Section 7 char-
acterizes their behavior using simulations. In Section 8 we discuss our insights and suggest ways to
extend our framework to a competitive market with multiple QoS classes. We conclude the paper in
Section 9.

2 Related Work

Batching has primarily been studied in the context of video-on-demand (VoD). Dan et al. [2]
study batching from the perspective of delay and customer loss rate. Almeroth et al. [3] propose
rate-based resource allocation when using multicast for video delivery schemes. Aksoy and Franklin
[12] propose a scheduling algorithm in data broadcast systems that balances content popularity and
waiting time. Aggarwal et al. [13] propose a batching scheme that weights the number of requests
with a factor biased against the content popularity to achieve uniformity in user loss rates. All
the above do not consider the problem of pricing content. Chan and Tobagi [14] consider profit
maximization in a batched VoD system with no resource constraints. They assume that the price of

the content is fixed and maximize profit by changing the batching scheme. They do not focus on



how the fixed price is determined. Wolf et al. [15] also consider the problem of profit maximization
for broadcasting digital goods. Their work examines scheduling the delivery of digital goods when
prices, and the penalties for delayed delivery, are known. In their work too, they do not consider
how the prices and the penalties are determined. Basu and Little [16] formulate the the problem
of profit maximization for a VoD system in terms of price and request arrival rate. They assume
that the request arrival rate is correlated with the price and that this correlation can be found using
market analysis and user surveys. In a dynamic market like the Internet, where customers from
geographically dispersed locations can purchase content from the same web site, market surveys
may be costly and potentially inaccurate. In our earlier work [9, 10, 11], we have focussed on the
problem of pricing content in a First-Come-First-Served content delivery system. Our earlier work
did not consider the implications of batching. Krishnamurthy [17] investigates resource allocation

for VoD based on dynamic pricing. His work also does not consider a batching system.
3 System Architecture and Batching Model

In a competitive market, the prices charged by competitors can affect consumer behavior
and hence revenues. There has been considerable research on agents that search for the best price
for a product [18, 19, 20, 21]. However, currently, not many consumers use such sophisticated
mechanisms. The average Internet user is restricted to popular web sites like Yahoo! or AOL. In
other words, brand loyalty is high in the Internet market*. Though our ultimate objective is develop
pricing mechanisms for a competitive market, in this paper, we restrict ourselves to a market where
there is a single content provider providing the service. Further we assume that the all customers
receive the same quality-of-service (QoS). In our discussion, we explain how our framework can be
extended to competitive markets with multiple QoS classes [22].

Figure 1 illustrates our content delivery architecture with an origin server and a mirror server.
Customers requesting content can be redirected to the closest source. Since the available resources
are different at different sources, pricing is done locally at each mirror server and at the origin server
independent of the prices at other locations. Thus, in Figure 1, for receivers in sets 1 and 2, the prices
are determined by the origin server, while for receivers in set 3, the prices are determined by the
mirror server. Since the prices are determined locally at each source, we shall henceforth, without
loss of generality, deal with a single source system. In our model, we assume that once the content

provider makes the initial infrastructural investment, there are either negligible or fixed costs in

4This may not be true in the future where consumers can be expected to be more Internet savvy.
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Figure 1. A Content Delivery Architecture

maintaining the resources (caches, servers, bandwidth, etc.), i.e., there are no additional costs based
on the number of requests served. This is a reasonable assumption because servers incur fixed costs
and bandwidth is typically bought at a flat rate. If maintenance costs are negligible or fixed, profit

maximization is equivalent to revenue maximization.

The resources at each source are modelled as logical channels. All channels are equal and
consume the same amount of resources, i.e, all users get the same quality-of-service. Suppose a
new request for product P; arrives at time t3. The content provider quotes a price to the customer
and announces the maximum delay in serving that request. This delay is the batching interval, 7,
for that product. In our model, the maximum delay for a product, once chosen, is not varied. If
the customer accepts the quoted price, and there are no previously batched requests for the same
content, a new channel is reserved to serve that request. The channel is actually allocated only
after the batching interval elapses at time ¢y + 7;. If however, there is a previously batched request
for the same product, then the new request is aggregated with the older request, and the channel is
allocated after the batching interval for the old request ends, at some time earlier than ¢y + 7;. By
making the batching interval for a product invariant, we guarantee that a request is served within the
maximum delay. However, when request arrival rates are exceptionally high, it is possible that there
is no previously batched request and no channel available within the maximum delay. The customer
is denied service and fully refunded in such cases. A critical design goal therefore is to minimize

denials of service due to resource constraints.



4 Analytical Framework

In this section, we develop a framework for analyzing pricing in a batching system. The
primary focus of this framework is maximizing the expectation of revenue. Consider an arbitrary
customer who wants to purchase service ;. We denote his/her decision to purchase the service
by the random variable D; which can take two values, 1 for accept and O for reject. We begin
our analysis by arguing that there exists some constant price which maximizes the expectation of
revenue per customer for any given product. The proof assumes that at high prices, the probability
that a customer will purchase the product is zero. This is a reasonable assumption since every
customer has only a finite capacity to pay. This means that the expectation of the decision to

purchase product P;, given price (p;), denoted by E[D; | p;], is zero for large values of the price
Pi).

Theorem 1 Consider an arbitrary product P;. If the expectation of the decision to buy P; given
price p;, (E[D; | p;]) is zero for all prices greater than peo, Poo > 0, then the expectation of revenue

per customer, E [vy;], is maximum for some constant price pyqy-

Proof Outline: We shall assume that E[D; | p;] is continuous in the interval p; € [0, 00). Let the
random variable ; denote the revenue per customer. Suppose that different prices are charged with

a probability density f,,. Then the expectation of revenue per customer for F; is given by:
Elv] =[5 piEID; | pilfp (pi)dpi
= J0= piE[D; | pil fp;(pi)dpi (1)

+  Jpo PiE[Di | il fp, (pi)dpi.

Since E[D; | p;] is zero for all p; greater than p., the second term in the integral defined above is
zero. Since E[D; | p;] is continuous in the interval [0, ps ], there exists some py,q4 in this interval at
which the function p; E[D; | p;] is maximum. If there are many such points, we arbitrarily choose
one of them. The expectation of the function p; E[D; | p;] is maximized if the probability density
at Pnqg is the highest. This will be the case when f,, is the Dirac delta function 6(p; — pmaz). In

other words, the expectation of revenue is maximized when p; has a constant value p,q5. O

Theorem 1 tells us that if resources are infinite, then there exists a fixed price that maximizes

the revenue for that product. This price can be determined if we know how the average customer



reacts to a price, i.e., we know E[D; | p;] 5 for all products P;. However, when resources are
limited, the same fixed price may not maximize the expectation of revenue. We illustrate this using
an example. Consider a hypothetical system with 3 products, 2 channels, a batching interval of 1
minute for each product, and a request arrival rate of 2 requests per minute per product. Further,
assume that at the optimal price, the acceptance rate is 0.5 for each product. In effect, if the content
provider quotes the optimal price, there will be 1 customer accepting the service for each product.
The content provider will need to allocate 3 channels for the three products. This clearly leads to an
unstable system since only 2 channels can be allocated. On the other hand, by selectively increasing
the price of some of the products, the content provider can ensure that customers for only two of the
products accept, but at a higher price. The customers for the third product do not accept the price. In
this manner, the content provider can earn a higher revenue by changing the prices of the products.
Further, only the first customer of a product needs to pay the higher price. The second customer
can be charged a discounted price because serving the second request for the same product does not
consume any resources. Thus, a higher revenue is earned if the price depends on the arrival rate and

on whether or not there is a previously batched request for that product.

We formalize the above ideas as follows. Let the number of products being served be m. For
product P;, if there is no existing batched request, let the price charged be p;. If there is an existing
batched request, let the price charged be p}. Let T; be the batching interval and \; the request arrival

rate for product P;. Then the revenue earned per unit time is given by:

R = Yripimin{\E[D; |pl, 4} o
+ Yt pimaz {0, MNE[D; | pi] — T%}

Resource constraints are modeled using system utilization. System utilization is the relative
fraction of time for which channels are busy servicing requests. Let n be the number of channels,
and the d the average time to serve a request®. Then, the system utilization, p, is defined as the
ratio of the number of requests entering the system per unit time to the maximum possible serviced
requests exiting the system per unit time. The mathematical expression for system utilization, when

we charge a price p; (when there are no previously batched requests) for product F;, is given by:

51t should be a continuous and well-defined function of price.

5We make the assumption that all products have similar service time. For other systems, only the formulation for
system utilization will change. The constraint remains the same.



Notation | Description

p; ith product

D; Decision to purchase P; (0 or 1)

Y Revenue per customer for P;

i Price of P; when there is no batched request
i Price of P; when there is a batched request
Ai Request arrival rate for P;

T; Batching interval for product P;

R Total revenue

n Number of channels
d Mean service time
p System Utilization

Table 1. Symbols Used

ds . 1

p=—=> min{NE[D;|pi, — 3
i T

Note that in (3), we need not consider requests that arrive when there is a previously batched

request for that product. This is because such requests do not consume extra resources. The prob-

lem of maximizing the expectation of revenue in a batching system can thus be formulated as a

constrained optimization problem:

Maximize : R “4)
d < . 1
— Zmzn {)\ZE[DZ |pi], —} S 1 (5)
iz T
Vi, 1 <4 <m, pj,pt > 0 (6)

In our model, we assume that every customer has some valuation for each product. When the
quoted price is lesser than or equal to the customer’s valuation for that product, then the customer
accepts the price. Different customers can have different valuations for the same product. Since
humans typically deal with discrete values, it is reasonable to believe that the valuations of indi-

vidual customers for a product are drawn from some arbitrary discrete probability distribution. We



now show that, if customer valuations for a product are drawn from some discrete probability distri-
bution, then the problem of maximizing expectation of revenue in a resource constrained batching

system is intractable, even when the probability distribution is known.

Theorem 2 Consider a batching system with n channels, serving m products with mean service
time d. Let the customers’ valuations for product P; be drawn from a discrete probability distribu-
tion I1;. Let request arrival rate for product P; be \;. Maximizing the expectation of revenue in this

system is intractable.

Proof Outline: Note that a constant distribution (where there is an element whose probability is 1)
is a special case of an arbitrary discrete probability distribution. Consider a constant distribution for
customer valuations. Let all customers have valuation v; for product P;. It can be easily verified

that the optimal price of product F; is either equal to v; or is greater than it.

We show that the NP-Hard 0-1 knapsack optimization problem, can be reduced to the ex-
pected revenue maximization problem when customer valuations are drawn from a constant distri-

bution.

We transform the knapsack problem with m objects and volume constraint V' into revenue
maximization problem as follows. Given object o; with gain g; and volume r;, construct product F;
with batching interval T; = 0, customer valuation g; and request arrival rate {*. Let d = 100 and o

=100 in the revenue maximization problem.

An optimal solution obtained for the above revenue maximization problem can be trans-
formed to a solution for the knapsack problem as follows. If the optimal price for product F; is
equal to v; then choose object o;, else discard it. The proof that the knapsack solution is optimal is

straightforward, and is omitted.

The above shows that maximizing the expectation of revenue with constant customer val-
uations can be as hard as solving the 0-1 knapsack problem. It follows that problem of revenue
maximization when customer valuations are drawn from an arbitrary discrete probability distribu-

tion is intractable. O

S Modeling Customer Behavior

In Theorem 2 we have shown the intractability of the revenue maximization problem, even

when the customer valuation distribution is known. In real life, the problem is harder, because

10
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the content-provider cannot know the customer distribution. However, one can make some general

observations about customer behavior and develop a model to understand customer valuations.

We model customers as rational human beings who have a finite valuation for a product. For
a rational customer population, we can infer the following about the expectation of the decision to

purchase product P;, given price p;, E[D; | p;]:

e E[D; | p;] is equal to 1 if price p; is 0
e E[D; | p;] is a non-increasing function of price p;
e There exists some price pj;gp such that E[D; | p;] is O for all prices greater than pp;gp,

e E[D; | p;] is observable, i.e., given price p;, one can estimate E[D; | p;] by observing how
many customers accept that price out of the total number of customers who requested the

product.

Based on the above observations, we propose a parametric family of non-increasing functions
which can be used to approximate E[D; | p;]. For each product, the model has three parameters—
tir, tig and §;. t;r and ¢; are thresholds for high and low expectation of the decision to purchase.
d; is a parameter to generate a non-increasing function whose value decreases from ¢;7, to ¢; as
price of product P; increases. Prices L; and H; correspond to the prices when the expectation of the
decision to purchase equals the thresholds ¢;;, and t; respectively. The non-increasing functions

are defined as follows:

11
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Figure 2 illustrates the function. Let us consider an example. Suppose a content provider
sets a higher threshold (¢;1) of 0.95 and a lower threshold (¢;z) of 0.05. If more than 95% of the
customers accept a price $1 and fewer than 5% accept a price $10, then L; is set to $1 and H;
is set to $10. Now performing more observations with prices in the range L; to H;, the content
provider can estimate more values of the expectation of the decision to purchase. This data can be
used to find the value of §; that minimizes the square of errors between the observed values and
the approximation function. Once the approximation function is known, it can be used to solve the
revenue maximization problem. Since the approximation function is continuous and differentiable”
in the range L; to H;, a numerical package can be used to find a solution® to the optimization

problem using gradient descent methods.
6 Pricing Algorithms

In this section, we describe six simple algorithms. This list is by no means exhaustive. How-
ever, it covers a wide spectrum of choices in pricing on-demand services. The pricing algorithms

are:

Uniform Fixed Price (UFP): Charge the same price for all products all the time. This algorithm
can be thought of as a base case. The main problem with this algorithm is that in the absence of any

information, it is difficult to choose an appropriate price.

Product Specific Fixed Price (PSFP): Charge a fixed price which is different for different products.
This algorithm is very similar to the previous algorithm. This algorithm assumes that the content
provider is able to differentiate among the products and charge a price that reflects perceived cus-

tomer valuations. It is difficult to choose this price when there is lack of information.

Time-varying Fixed Price (TFP): Charge a fixed price for all products. Charge a different fixed

"For customer valuations drawn from discrete probability distributions, E[D; | p;] will be a discontinuous function.
But we still work with a continuous and differentiable approximation to be able to solve the revenue maximization
problem.

8The solution however is not guaranteed to be a global optimum.

12
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Figure 3. State Diagram for Learning Expectation of Decision to Purchase for Product
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price during “peak hours.” This algorithm is similar to what is adopted at movie theatres. The price

increase during peak hours can increase revenues. Again, choosing the right prices is difficult.

System-load Price (SP): Charge a variable price that increases exponentially with system load.
This is an example of a dynamic pricing algorithm. The exponential increase in price is designed to

increase revenues at times of load as well as to prevent the system from becoming unstable.

Intelligent System-load Price (InSP): Charge a variable price that increases exponentially with
system load. If there is a previously batched request and the load is high, offer a discount. The idea
behind this algorithm is that once resources have been allocated, there is no effect of an additional
request on the resource consumption. Because, the exponential price will be high when the system
load is high, customers may be less likely to accept the price. Therefore, a discount is offered so

that more customers join and thereby increase revenue.

Minimum Squared Error Price (MSEP): Charge different prices for each product initially to
ascertain the parameter d; as described in the previous section. Then solve the optimization problem

to obtain “optimal” prices for each product. We now explain this algorithm in greater detail.

The revenue function depends on two quantities— request arrival rate ()\;) and the expectation
of the decision to purchase (E[D; | p;]). Of these, the request arrival rate can be directly observed
while the expectation to purchase can be approximated using minimization of squared errors. The

content provider needs to perform experiments with different prices to observe E[D; | p;]. Since

13



the number of products can be large, and request arrival rates highly skewed, we partition the set of
products into classes. For instance, in a VoD system, movies can be classified as “New”, “Recent”,
and “Old”. Products are classified on the basis that customers’ valuations will be similar for products
in the same class. The prices for all products in a class are equal. Customer’s reactions are observed
for the entire class. For instance, let products A and B belong to the same class, say S, and let
the current price charged for both A and B be $5. If during the observation period there are 10
requests for A and 8 requests for B and 3 customers accept the price for A and 5 accept the price
for B, then the acceptance rate for the class S is % = 0.44. Aggregating the products into
classes helps in reducing the period of observation. The periods of observation are called rounds.
When the number of requests for any product class reaches a threshold, say 100 requests, the round
is terminated. The observed acceptance rates and request arrival rates are then computed for each
class. The learning process for every product class follows the state diagram shown in Figure 3.
There are k learning states, each corresponding to one round of requests. E[D; | p;] is observed for
k different prices. Based on these observations, the approximation function for the expectation to
purchase products in that class is obtained using minimization of squared errors. The approximation
function is then used in the revenue maximization problem to obtain “optimal” prices. Once these
prices are obtained, there is a state transition to the “NORMAL” state. At the end of every round
in the normal state, the prices p; and p} charged in that round yield observations for E[D; | p;] and
E[D; | pl]. This data along with old data® is used to improve the approximation function for the
expectation to purchase products in that class. Since different product classes can be in different
states of the learning process at any given time, the revenue maximization is applied only on those
product classes that are either exiting the “LEARN k™ state or are already in the “NORMAL” state.
Since customer behavior can be dynamic, it is possible that some observations violate the thresholds
t;r. or t;7. In such cases, the threshold prices H; and L; respectively, are suitably updated and the
state is returned to “LEARN 1.” Since the threshold prices L; and H; can change if customer
behavior changes, the states are periodically returned to the start state, “LEARN 17, Choosing the
periodicity of this transition to “LEARN 1” can affect the revenue earned because all the acquired

information is lost in this transition.

7 Simulations

We have implemented a simulator to model a content delivery system. We ran our simulations

over one day of simulated time. All our simulation results are averaged over five runs with different

9The old data can be aged using a constant factor c. In addition, very old observations can simply be ignored.

14



seed values for the random number generator. We describe the simulation scenario below.

System Description: We performed simulations with 100, 200, and 1000 channels. These three
configurations represent highly constrained, moderately constrained, and under-constrained systems
respectively. We ran simulations on these three systems to examine how the performance of the
pricing algorithms varies with resource availability. We chose request service times from a uniform
distribution between 90 and 110 minutes. This closely models the typical length of movies in a
VoD system. We chose a fixed batching interval of 10 minutes for all products. We did not vary the
batching interval because of two reasons. First, a fixed batching interval gives a service guarantee
to customers. Second, the impact of the batching interval on system load and customer behavior has
been examined in numerous studies [23, 3, 5]. Requests which cannot be allocated a channel within

the maximum delay (batching interval) are rejected.

Customer Choice of Products: In all our simulations we assume that there are 100 products for
the customer to choose from. Customer choice of the products was assumed to follow a Zipf-like

distribution with zipf-exponent'®, @ = 0.73. In a Zipf-like distribution, the i** popular product in a
1

group of m products is requested with probability Zn%i?l

j=1 ;6

Customer Valuation Model: We assume that the products are partitioned into classes. The valu-
ation of a product is drawn from a probability distribution which is common for all products in a
class. We further assume that the content provider knows how the products have been partitioned,
but has no knowledge about the probability distribution. This is a reasonable assumption because,
in real-life, the content provider can partition products into “New”, “Recent”, and “Old” classes.
The valuations for products in one class can be expected to be significantly different from those of
products in other classes. In our simulations, we chose the number of classes (say k) and a product

was equally likely to belong to any of these k classes.

Since humans typically think in terms of discrete values'!, we chose four possible discrete
probability distributions for modeling customer valuations: Uniform, Bipolar, Zipf, and Constant.

We briefly describe each of them below:

e Uniform(/, h, n): Customer valuations are drawn from 7 equally spaced values in the range

[ to h (both inclusive) with equal probability.

10web-page accesses have been observed to obey a Zipf-like distribution with zip-exponent in the range 0.64 to 0.83
[24].

n real life, customer valuations may not conform to any of these distributions. But in the absence of real life data,
our objective was to test the robustness of the pricing algorithms over a range of “feasible” customer behavior patterns.
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Steady State System
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Figure 4. Workloads

e Bipolar(l, h, r): Customer valuations are either [ with a probability r, or h with a probability
(1 —r).

e Zipf(, h, n, 8): Customer valuations are drawn from a set of n equally spaced values in the
range [ to h (both inclusive) whose ranks follow a Zipf distribution with a zipf-exponent 6.

Income distributions are believed to correspond to a Zipf distribution with 8 = 0.5 [25].

e Constant(c): All customer valuations are c.

In all our simulations, our unit of currency is dimes (10 dimes = $1). We performed simula-
tions with numerous customer valuations. In this work, we present results for customer valuations
that are “realistic”. We use valuations corresponding to prices charged in movies theatres. We have
observed theatres charging $2.50 for old movies, $5.50 for matinee shows and $8.50 for evening
shows. We therefore choose three classes of products. For simplicity of labelling, we shall refer to
these classes as “Old”, “Recent”, and “New”. For the Zipf and Uniform distributions, the valuations
for the classes are in the range [20, 50], [40, 70] and [50, 90] dimes respectively. For the Bipolar
distribution, the valuations for the classes are drawn from {20, 50}, {40, 70} and {50, 90} respec-
tively. In case of the Constant distribution, the valuations for the classes are set to 30, 50 and 80

respectively.

16



Pricing Policy: We assume that the content-provider will charge at least $1 and not more than
$10 for serving the content. We simulated all six pricing algorithms described above. In the case
of static pricing policies, since we do not know what price to charge, we repeated our simulations
with prices 10, 20, 30, ..., 100. We consider each of these prices equally likely and present the
mean performance over this set of prices. In case of Time-varying Fixed Price (TFP) algorithm, we
consider 6:00 PM (600 minutes after 8:00 AM) to 00:00 AM (960 minutes after 8:00 AM) as peak
hours. For our simulations using TFP, we always assume that price during peak hours is more than
the price during non-peak hours. For the Product Specific Fixed Price Algorithm (PSFP), the prices
for “New” products were always more than those for “Recent” products. Similarly, the prices for

“Recent” products were more than those for “Old” products.

In the case of the System-load Price (SP) algorithm, prices were computed using the function
p; =9 + 917, where x is the instantaneous system load. The instantaneous system load is computed
as the ratio of the number of occupied channels to the total number of channels in the system. Using
this algorithm, the customer is charged at least 10 dimes when there is no load and at most 100 dimes
when the system is fully loaded. There are other functions that charge an exponentially increasing
price with increasing system load. However, we consider this function as sufficiently representative
of the entire class of such functions. In the case of the Intelligent System-load Price (InSP) algo-
rithm, we do not know what discount to offer for requests when there is a previously batched request
at times of high load. Whenever the instantaneous system load exceeds 0.7, we offered discounts
to requests that arrived when there is a previously batched request. We repeated simulations with
different discount amounts ranging from 10% to 50%. We present the mean performance assuming

each of these discounts is equally likely.

Request Arrival Process: The arrival-rate models we used in our simulations are shown in Figure
4. These models are adapted from the work on arrival-rate based scheduling by Almeroth et al.[3].
The workloads are modeled based on a 24 hour period beginning from 8:00 AM of one day and
running to 8:00 AM of the next. “Prime time” periods see a surge in demand. We have used a
steady baseline workload, with no surges in demand, and three non-steady workloads. The arrival
rates during prime time for the non-steady workloads were around five times greater than the normal
rate. This ratio is based on statistics reported by Little and Venkatesh [26]. We simulated both
gradual as well as sudden increases in arrival rate. We also used a workload with hourly spikes
during prime time. This type of workload is based on the belief that the workload for some systems
may be synchronized with an external event like wall-clock time. We choose the same workloads
for all three systems (100, 200, and 1000 channels) so that the systems are indeed over-constrained,

moderately constrained and under-constrained.
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100 Channels

UFP TFP PSFP SP InSP MSEP
Uniform | (86, 0.30) (89,0.30) (87,0.28) (88,0.03) (88,0.03) | (119,0.40)
Bipolar | (117,0.31) | (114,0.31) | (117,034 ) | (113,0.03) | {(111,0.03) | (120,0.33)
Zipf (47,0.22) (52,0.22) (41,0.16) (62,0.01) (61,0.01) (85,0.27)
Constant | (110,0.30) | (110,0.31) | (99,0.33) (95,0.03) (91,0.03) | (135,0.29)
200 Channels
UFP TFP PSFP SP InSP MSEP
Uniform | {136,0.17) | (144,0.14) | (144,0.13) | (193,0.01) | (194,0.01) | (220,0.18)
Bipolar | (182,0.16) | (188,0.14) | (201,0.17) | (218,0.01) | {(210,0.01) | (223,0.13)
Zipf (78,0.12) (87,0.09) (66,0.06) | (142,0.00) | (137,0.00) | (135,0.14)
Constant | (171,0.16) | (178,0.14) | {168,0.17) | (227,0.00) | (202,0.00) | (221,0.14)
1000 Channels
UFP TFP PSFP SP InSP MSEP
Uniform | { 187,0.00) | (189,0.00) | {(198,0.00) | (191,0.00) | (191,0.00) | (299, 0.00)
Bipolar | (234,0.00) | (235,0.00) | (284,0.00) | (177,0.00) | (177,0.00) | {310,0.00)
Zipf (106,0.00) | (109,0.00) | (86,0.00) | (177,0.00) | (177,0.00) | (194,0.00)
Constant | (218,0.00) | (220,0.00) | {246,0.00) | (193,0.00) | (193,0.00) | {313,0.00)

Table 2. Simulation 1: Mean ( revenue earned, denial rate ) over all workloads

Metrics: We use two metrics in our simulations: (1) revenue earned, and (2) percentage of requests

denied service because they could not be scheduled within the maximum announced delay (batching

interval).

The higher the revenue earned by a pricing algorithm, the better the performance. Ideally,
we would like to compare the revenues earned by each algorithm with the predicted maximum
expectation of revenue, computed using complete knowledge of system and customer parameters.
However, as we showed in Theorem 2, the revenue maximization problem is intractable for discrete
probabilty distributions. In a system with 100 products and a variety of request arrival rates, it
is difficult to compute the globally optimal revenue. We therefore only use comparison among
revenues earned by the different algorithms in different scenarios to characterize them. Thus, it
is quite likely that even though one algorithm performs very well, the revenue earned using that
algorithm may be very far from the global optimum. Our focus therefore has been to ascertain if

one of the algorithms performs consistently well in comparison to the other algorithms across the
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different customer valuation and system load profiles.

Our other metric, the percentage of denied requests, in very important for a commercial
system for two reasons. First, a high percentge of denied requests indicates that the content-provider
is not living up to service guarantees. Second, it indicates that the content provider is unable to

manage avaialable resources efficiently.

7.1 Results

We now present our simulation results. We performed two types of simulations:

1. There is no change in the customer behavior. However, the request arrivals are dynamic.

2. There is a change in the customer behavior during peak hours (6.00 PM to 9.00 PM). The

request arrivals are dynamic.

To better illustrate the performance of each pricing algorithms, across different system and
customer profiles, we present the results in tabular form. Each entry in the table is an ordered pair
(R, 7). R is the mean revenue earned by that pricing algorithm over a number of simulations and
r is the mean request denial rate. By denial rate we mean the fraction of requests that could not be
allocated a channel within the maximum announced delay. The revenues presented in our results

have been rounded to the nearest 1000.

Note that it will not be appropriate to compare revenues within a column because, the cus-

tomer valuations are different for different distributions.

Simulation 1: Table 2 presents the results from the first set of simulations. We observed that given a
system and customer population, the performance trends did not vary significantly with workloads.
We therefore present only the mean performance over all the workloads. Table 2 indicates that the
MSEP algorithm gives high revenue when compared to the revenues generated by other algorithms,
in all three systems, for each of the customer distributions. However, the denial rate is also among
the highest for the highly constrained and moderately constrained systems. This can be attributed to
the fact that the MSEP algorithm learns customer behavior by experimenting with different prices.
In resource constrained systems, if a low price is charged, more customers will accept the price than

can be accomodated by the system. This leads to denial of service.

SP generates revenues comparable to that of MSEP in the moderately constrained system.

The reason for this is that at moderate system loads, say around 0.7 to 0.9, the price charged by
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the SP algorithm is in the range 40 to 66. This price eliminates most of the requests for “Old”
products while accomodating customers for the “New” and “Recent” products, most of whom have
a higher valuation than the price charged. The SP algorithm therefore earns high revenue. The
MSEP algorithm has a comparable performance because it learns the customer valuations. The
reduction in revenue when compared to SP is probably because of the experiments performed with
either too high or too low prices. The InSP algorithm does not gain much by offering discounts to
requests that arrive when there is an already batched request. The reason for this is that the result
presented is the mean over different discounts offered to customers. This indicates that if the “right”
discount is not known, then the InSP algorithm may not be useful. In other simulations that we
performed, we found that the discount that yields the highest revenue varies between 10% to 20%

and depends on the workload.

In case of the fixed pricing algorithms, the result presented is the mean over several fixed
prices. This is to illustrate the average case behavior when we do not know anything about the
customer population. But there do exist fixed prices which yield very high revenue. For instance,
in one simulation, a fixed price of 60 (using the UFP algorithm), in a system with 100 channels
and a constant request arrival rate generates a revenue of 161000 when customer valuations are
drawn from the uniform distribution. The MSEP algorithm was able to generate only 118800 for
that simulation. However, the same fixed price, generates absolutely no revenue (revenue is zero!)
when the customer valuations were drawn from the Zipf distribution. In the absence of any prior
knowledge about customer valuations, choosing a fixed price can therefore be very difficult. Market
surveys can possibly be used to get a rough idea what price to charge. Such surveys can also help
the MSEP algorithm in limiting the range of prices over which it experiments to learn the customer
behavior.

Among the fixed pricing algorithms, we noticed some interesting behavior that illustrates how
different pricing in a content delivery system is as opposed to, say, pricing at a DVD rental. For the
constant distribution, the customer valuations are 30, 50 and 80 respectively for each product class.
For a DVD rental service with three movies with the same customer valuations, charging 30, 50 and
80 respectively (PSFP algorithm) would generate high revenue. However, in a batching system with
100 channels, and an arrival rate of 7.5 requests per minute, charging a fixed price of 80 generates
around 270000 in revenue while the PSFP algorithm only generates 180000. The reason behind this
is that the UFP algorithm is allocating channels only to those who value it most.

Simulation 2: In the second set of simulations, we varied the customer valuation during peak hours.

For the results presented in this paper, all the customer valuations were increased by 30 during peak
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100 Channels

UFP TFP PSFP SP InSP MSEP
Uniform | { 100,0.35) | (109,0.35) | {(103,0.36) | (104,0.04) | (107,0.04) | (137,0.43)
Bipolar | (130,0.36) | (135,0.37) | (133,0.43) | (143,0.08) | {136,0.08) | (139,0.37)
Zipf (63,0.27) (70,027 ) (60,0.24) (73,0.02) (71,0.02) | {(106,0.30)
Constant | ( 134,0.38) | (152,0.39) | (132,0.46) | (142,0.11) | (126,0.11) | {169,0.36)
200 Channels
UFP TFP PSFP SP InSP MSEP
Uniform | { 163,0.20) | (182,0.18) | {(176,0.20) | (222,0.01) | (223,0.01) | (249,0.20)
Bipolar | (207,0.20) | (227,0.18) | (233,024 ) | (260,0.02) | {(247,0.02) | (256,0.16)
Zipf (107,0.15) | (120,0.12) | {101,0.12) | (169,0.01) | (158,0.01) | (171,0.16)
Constant | (214,0.21) | (251,0.19) | {230,0.28 ) | (285,0.02) | (247,0.02) | (283,0.20)
1000 Channels
UFP TFP PSFP SP InSP MSEP
Uniform | {237,0.00) | (253,0.00) | {273,0.00) | (196,0.00) | {196,0.00) | (355,0.00)
Bipolar | (283,0.00) | (303,0.00) | {370,0.00) | (195,0.00) | {(195,0.00) | {354,0.00)
Zipf (154,0.00) | (159,0.00) | {151,0.00) | (194,0.00) | {(194,0.00) | (253,0.00)
Constant | (294,0.00) | (328,0.00) | {393,0.00) | (193,0.00) | (193,0.00) | {438,0.00)
Table 3. Simulation 2: Mean ( revenue, denial rate ) over all workloads with variable

customer behavior

hours. Table 3 presents the results. As in the case of the first set of simulations, we observed that the
performance trends did not vary with workload. We therefore present only the mean performance
over all workloads. The MSEP algorithm consistently generates high revenues in comparison to the
other algorithms across all customer distributions and resource constraints, mainly because it learns
the customer behavior by experimenting with different prices. And because of experimentation
with different prices, it has a higher service denial rate. All the results appear consistently similar
to the results in the first set of simulations. All revenues are higher than in the first set because the

customer valuations are higher during the peak hours.

An interesting result in both Simulation 1 and in Simulation 2 is that the SP and InSP algo-
rithms have minimal service denial rate. The reason for this is that when request arrivals increase,
SP and InSP increase prices to such an extent that it exceeds the valuations of most customers. This

reduces the number of customers accepting the service and thereby reduces the service denial rate.
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Once the system returns to being lightly loaded, the price is reduced, thereby encouraging more
customers to accept the price. In the case of the Constant distribution of customer valuations and
system with 100 channels, we observe that the denial rate is substantially higher. This is because,
at high load, the price is very high and only the customers for “New” products can accept the price.
Since in a Constant distribution all customers have the same valuation, either all customers can ac-
cept the high price, or none can. This causes an oscillating behavior where many customers accept
the price at the same time (and get rejected by the system) or none accept, thereby lowering the

price, which again causes many to accept and so on.

We performed other simulations where we varied the frequency with which the customer be-
havior changed. We observed that the performance of all the algorithms decays when the customer
valuations change rapidly. However, the relative performance of each of the algorithms was fairly

consistent with the trends observed in Table 2 and Table 3. We therefore do not present those results.

7.2 A Hybrid Pricing Algorithm

We observed in the simulation results that the MSEP algorithm generates high revenue, but
has an exceptionally high service denial rate. On the other hand, the SP algorithm greatly reduces
the service denial rate. An interesting possibility would be to combine the best features of these
two algorithms. To this end, we propose the following. When the instantaneous system load is
below a threshold, use MSEP. If instantaneous system load exceeds the threshold and there is not a
previously batched request, use SP. If instantaneous system load exceeds the threshold but these is
an already batched request, then use MSEP. The idea behind this is that, if there is an already batched
request, no extra resources are consumed, so an exponentially high price may not be suitable. The
question then arises, how do we decide the treshold? We assumed different values for the threshold
and ran simulations using all the scenarios. We found that though there is some variability in
performance, a threshold value in the range [0.7,0.8] generates high revenues while reducing the
service denial rates over all customer behavior and workload profiles. In Table 4, we present the
results for Simulation 1 and Simulation 2, using the Hybrid algorithm with the system load threshold
set to 0.75. Notice that the revenue of the hybrid algorithm, though slightly lower, is comparable
with that of MSEP for all three systems. Also note that the service denial rate is comparable to that
of SP for all three systems. Thus, for a slight loss in revenue, the service denial rate has been greatly

reduced.
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Simulation 1

100 Channels | 200 Channels | 1000 Channels
Uniform | (107,0.03) (200,0.01) {299, 0.00)
Bipolar (140, 0.03) (242,0.01) (310, 0.00)
Zipf (72,0.02) (123,0.00) {194, 0.00)
Constant | (115,0.03) (195,0.00) (313,0.00)

Simulation 2

100 Channels | 200 Channels | 1000 Channels
Uniform | (130, 0.04) (242,0.01) {(355,0.00)
Bipolar (163,0.06) (271,0.01) (354,0.00)
Zipf (85,0.03) (153,0.01) {253,0.00)
Constant | (152,0.10) (258,0.03) (438,0.00)

Table 4. Mean ( revenue, denial rate ) for Hybrid Algorithm

8 Future Work

There are a number of advanced issues that would be interesting to study in greater detail,
but have not been touched upon in this work. Instead, our interest has been on a comprehensive
and thorough study of the more fundamental issues. Based on these findings, we intend to explore

advanved topics in the future, such as the ones outlined below.

Quality-of-Service: A realistic content-delivery system should have multiple classes of service.
A system with multiple QoS classes can be modelled using a fluid resource model. With a single
service class, one can define resource constraints by using the notion of system utilization. With
multiple QoS classes however, one cannot directly apply the notion of system utilization. This is
because the maximum number of requests that can be serviced by the system depends on the relative
fraction of resources allocated to each QoS class. If this fraction is dynamic and depends on the rate
of request arrivals for each class, system utilization cannot be defined. A heuristic that can be used is
the observed relative fraction of request arrivals for each QoS class to define the system utilization.

This topic is dealt with in greater detail in our subsequent work [22].

Competitive Markets: In this work, we have assumed that there is no competition. This could be
an unrealistic assumption. However, there are many factors that suggest that the e-content market

is not perfectly competitive. For instance, the content provider could be the only distributor of the
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content. This is the case when either the content provider owns the content or has exclusive license
to distribute the content. This market is clearly monopolistic. Notice however, that there may be
indirect competition from “similar” content from other content providers. This will have an indirect
effect on the customers’ valuation of the content. Since MSEP learns these valuations, indirect

competition will not significantly impact the pricing model.

The MSEP algorithm can work equally well in a competitive market if we make the following
change. Suppose that the content-provider makes a policy decision to charge not more than k%
of the lowest price charged for that product by any competitor. Then, one can write scripts to
ascertain the current price at some of the leading competitor’s websites. The lowest among the
prices determined in this fashion can be used to set an additional constraint on the prices in the
revenue maximization problem. Such constraints only affect the domain in which a gradient descent

method will search for a solution.

Discounts for Denied Requests: Instead of denying requests that cannot be served within the
maximum delay, the content provider can adopt an approach similar to that investigated by Wolf et
al. [15]. The content provider can offer a discount for delayed delivery of the product. The problem
of maximizing revenue is even harder in this case. Various heuristics need to be explored to offer the
“right” discount. The customer model will also be more complex because the customer’s valuation

is now dependent on the delay and the discount offered.

Impact of Dynamic Pricing on Customer Behavior: Dynamic pricing algorithms, while gen-
erating high revenues or reducing service denial rates, may make customers uncomfortable. A
subscription-pricing scheme, if coupled with a dynamic pricing scheme, can mitigate customer con-
cerns. In a subscription based scheme, customers pay a bulk amount for making a predetermined
number of requests, or alternately, pay a bulk amount for unlimited requests over a finite period
of time. It would be interesting to ascertain how subscription prices are determined and if system

resource constraints play a role in determining these prices.

Another approach to control the negative impact of dynamic prices on customer behavior is
to offer a fixed price but a dynamic discount. For example, suppose that the content provider fixes
the price at $10. If the dynamic price suggested by MSEP is $8, then the discount offered is $2.
Similarly, if after the next price revision, MSEP suggests a price of $7, the discount is increased to

$3. Since the price is “fixed”, the customers will still be comfortable with the dynamic prices.

Other Pricing Models: Sealed-bid auctions can be adapted to batched content delivery systems.
The bids can be cleared once every batching interval. Strategies to choose winning bids in a manner

that yields high revenue as well as increases efficiency of resource utilization is an interesting avenue
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of research. Mechanisms to prevent collusion also need to be studied. Collusion prevention also

needs to be studied in the context of learning algorithms like MSEP.

9 Summary

We examined the problem of pricing in a content delivery system impementing batching. We
noted that pricing must consider customers’ valuations as well as resource constraints. We observed
that in the absence of any resource constraints, a fixed pricing strategy can maximize the expectation
of revenue. We showed that this may not hold true when resources are limited. We formulated the
problem of revenue maximization as one of constrained optimization and showed its intractability
under certain conditions. Since customer behavior may not be known, we propose a class of non-
increasing functions to approximate customers’ expectation to purchase products and discuss how
the parameters governing this function can be ascertained. We also describe a pricing algorithm
(MSEP) based on this mechanism.

To better understand the dynamics of pricing, we studied the performance of six different
pricing algorithms under different customer behavior and system load profiles. We discovered that
the class of fixed pricing algorithms can generate high revenues, if there is some prior knowledge
about customer behavior. In the absence of such knowledge, the revenue earned can be arbitrarily
low depending on the customer behavior. In such situations, the MSEP algorithm yields consistently
high revenues, at the expense of a high service denial rate. In contrast, a system-load based pricing
algorithm (SP) has minimal service denial rate. We therefore combined the MSEP algorithm and
the SP algorithm in order to generate high revenues with minimal service denial rate. We found
that though there is some loss in revenue when compared with MSEP, the gains in terms of reduced

service denial rate far outweigh the loss.
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